Effect of Grain Size on the Fracture Toughness of Bimodal Nanocrystalline Materials

Abstract:

Article Preview

To research the effect of grain size on the fracture toughness of bimodal nanocrystalline (BNC) materials which are composed of nanocrystalline (NC) matrix and coarse grains, we have developed a theoretical model to study the critical stress intensity factor (which characterizes toughness) of BNC materials by considering a typical case where crack lies at the interface of two neighboring NC grains and the crack tip intersect at the grain boundary of the coarse grain, the cohesive zone size is assumed to be equal to the grain size d of the NC matrix. Blunting and propagating processes of the crack is controlled by a combined effect of dislocation and cohesive zone. Edge dislocations emit from the cohesive crack tip and make a shielding effect on the crack. It was found that the critical stress intensity factor increases with the increasing of grain size d of the NC matrix as well as the coarse grain size D. Moreover, the fracture toughness is relatively more sensitive to the coarse grain size rather than that of NC matrix.

Info:

Periodical:

Edited by:

Zhang Mei

Pages:

400-408

DOI:

10.4028/www.scientific.net/AMR.936.400

Citation:

Y. G. Liu et al., "Effect of Grain Size on the Fracture Toughness of Bimodal Nanocrystalline Materials", Advanced Materials Research, Vol. 936, pp. 400-408, 2014

Online since:

June 2014

Export:

Price:

$35.00

* - Corresponding Author

[1] C.C. Koch, D.G. Morris, K. Lu, A. Inoue, Ductility of nanostructured materials, MRS Bull. 24 (1999) 54–58.

DOI: 10.1557/s0883769400051551

[2] K.S. Kumar, V. Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003) 5743–5774.

[3] S. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, et al, Tensile elongation (110%) observed in ultra-fine-grained Zn at room temperature, Appl. Phys. Lett. 81 (2002) 823–825.

DOI: 10.1063/1.1494866

[4] A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility, Scr. Mater. 49 (2003) 651–656.

DOI: 10.1016/s1359-6462(03)00397-x

[5] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002) 5–8.

[6] A.E. Pasto, D.N. Braski T.R. Watkins, W.D. Porter, E. Lara-Curzio, S.B. McSpadden, Characterization techniques for composites and other advanced materials, Composites: Part B 30 (1999) 631–646.

DOI: 10.1016/s1359-8368(99)00040-2

[7] G.X. Cao, X. Chen, Z.H. Xu, X.D. Li, Measuring mechanical properties of micro- and nano-fibers embedded in an elastic substrate: theoretical framework and experiment. Composites Part B 41(2010) 33–41.

DOI: 10.1016/j.compositesb.2009.03.002

[8] S. Neralla, D. Kumar, S. Yarmolenko, J. Sankar, Mechanical properties of nanocomposite metal–ceramic thin films, Composites: Part B 35 (2004)157–162.

DOI: 10.1016/j.compositesb.2003.08.005

[9] M. Dao, L. Lu, R.J. Asaro, J.T.M.D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater. 55 (2007) 4041–4065.

DOI: 10.1016/j.actamat.2007.01.038

[10] X. Zhang, H. Wang, C.C. Koch, Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn, Rev. Adv. Mater. Sci. 6 (2004) 53–99.

[11] B.Q. Han, E. Lavernia, F.A. Mohamed, Mechanical properties of nanostructured materials, Rev. Adv. Mater. Sci. 9 (2005) 1–16.

[12] I.A. Ovid'ko, Rev. Adv. Superplasticity and ductility of superstrong nanomaterials, Mater. Sci. 10 (2005) 89–104.

[13] Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured, Metal Nature 419 (2002) 912–915.

DOI: 10.1038/nature01133

[14] Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility in nanostructured Cu, Appl. Phys. Lett. 80 (2002) 2395–2397.

DOI: 10.1063/1.1465528

[15] A.H. Chokshi, A.K. Mukherjee, A topological study of superplastic deformation in an Al–Li alloy with a bimodal grain size distribution, Metall. Trans. A 19 (1988) 1621–1624.

DOI: 10.1007/bf02674038

[16] I.A. Ovid'ko, A.G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater. 58 (2010) 5286-5294.

DOI: 10.1016/j.actamat.2010.05.058

[17] G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, Plastic deformation and fracture ofultrafine-grained Al–Mg alloys with a bimodal grain size distribution, Acta Mater. 54 (2006) 1759–1766.

DOI: 10.1016/j.actamat.2005.11.044

[18] B.Q. Han, J.Y. Huang, Y.T. Zhu, E.J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater. 54 (2006) 3015–3024.

DOI: 10.1016/j.actamat.2006.02.045

[19] L.L. Zhu, S.Q. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Mater. 60 (2012) 5762–5772.

DOI: 10.1016/j.actamat.2012.06.059

[20] L.L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast. 30–31 (2012) 166–184.

DOI: 10.1016/j.ijplas.2011.10.003

[21] Y.G. Liu, J.Q. Zhou, H. David, A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure, Composites Part B 43 (2012) 249–254.

DOI: 10.1016/j.compositesb.2011.11.048

[22] B.Q. Han, Z. Lee, D. Witkin, S. Nutt, E.J. Laveravi, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A 36 (2005) 957–965.

DOI: 10.1007/s11661-005-0289-7

[23] M.J.N.V. Prasad, S. Suwas, A.H. Chokshi, Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution, Mater. Sci. Eng. A 503 (2009) 86–91.

DOI: 10.1016/j.msea.2008.01.099

[24] Z. Lee, D.B. Witkin, V. Radmilovic, E.J. Lavernia, S.R. Nutt, Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution, Mater. Sci. Eng. A 410 (2005) 462–467.

DOI: 10.1016/j.msea.2005.08.104

[25] A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech. 54 (1987) 525-531.

DOI: 10.1115/1.3173064

[26] V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids. 40 (1992) 1377-1397.

DOI: 10.1016/0022-5096(92)90020-3

[27] N.G. Broedling, A. Hartmaier, H.J. Gao, A combined dislocation-cohesive zone model for fracture in a confined ductile layer, Int. J. Fract. 140 (2006) 169-181.

DOI: 10.1007/s10704-005-6025-x

[28] V.S. Deshpande, A. Needleman, E. Van der Giessen, A discrete dislocation analysis of near-threshold fatigue crack growth, Acta Mater. 49 (2001) 3189-3203.

DOI: 10.1016/s1359-6454(01)00220-8

[29] D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids. 8 (1960) 100-104.

[30] T.K. Bhandakkar, A.C. Chng, W.A. Curtin, H.J. Gao, Dislocation shielding of a cohesive crack, J. Mech. Phys. Solids. 58 (2010) 530-541.

[31] V.S. Deshpande, A. Needleman, E. Van der Giessen, Discrete dislocation modeling of fatigue crack propagation, Acta Mater. 50 (2002) 831-846.

DOI: 10.1016/s1359-6454(01)00377-9

[32] N. Chandra, H. Li, C. Shet, H. Ghonem, Some issues in the application of cohesive zone models for metal–ceramic interfaces, Int. J. Sol. Struct. 39 (2002) 2827-2855.

DOI: 10.1016/s0020-7683(02)00149-x

[33] I. Scheider, M. Rajendran, A. Banerjee, Comparison of different stress-state dependent cohesive zone models applied to thin-walled structures, Eng. Fract. Mech. 78 (2011) 534-543.

DOI: 10.1016/j.engfracmech.2010.05.003

[34] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scr. Metall. Mater. 23 (1989) 1679-1683.

DOI: 10.1016/0036-9748(89)90342-6

[35] D.K. Kim, K. Okazaki, Processing of superconducting composite materials by electro-discharge compaction, Mater. Sci. Forum 553 (1992) 88–90.

[36] T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J.Z. Zhang, S.C. Vogel, Y.S. Zhao, Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation, Acta Mater. 55 (2007) 5007-5013.

DOI: 10.1016/j.actamat.2007.05.018

[37] G. Palumbo, U. Erb, K.T. Aust, Triple line disclination effects on the mechanical behaviour of materials, Scr. Metall. Mater. 24 (1990) 2347-2350.

DOI: 10.1016/0956-716x(90)90091-t

[38] T.Y. Zhang, J.C.M. Li, Image forces and shielding effects of an edge dislocation near a finite length crack, Acta Metall. Mater. 39 (1991) 2739-2744.

DOI: 10.1016/0956-7151(91)90091-e

[39] I.H. Lin, R. Thomson, Dislocation emission, and shielding for cracks under general loading, Acta Metall. 34 (1986) 187-206.

DOI: 10.1016/0001-6160(86)90191-4

[40] Y.G. Liu, J.Q. Zhou, L. Wang, S. Zhang, Y. Wang, Grain size dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A 528 (2011) 4615-4619.

DOI: 10.1016/j.msea.2011.02.056

In order to see related information, you need to Login.