Adsorption Equilibrium and Thermodynamics Behavior of Sodium Pentachlorophenol to Biomass-Derived Biochars at Two Pyrolytic Temperatures

Abstract:

Article Preview

Wheat straws were pyrolyzed at two temperatures (200 and 400°C). For two biochar, the Scanning electron microscope (SEM) and the BET surface area were analyzed. The thermodynamics of sodium pentachlorophenate adsorption on biochar were examined. Adsorption isotherm of sodium pentachlorophenate on biochar was determined and correlated with two well-known isotherm equations (Langmuir and Freundlich adsorption isotherm equation). The equilibrium data for sodium pentachlorophenate adsorption were fitted well with the Freundlich adsorption model. The thermodynamic parameters of Gibbs free energy (△Gθ), enthalpy (△Hθ), and entropy (△Sθ) were also calculated, and the positive value of △Hθ suggests the endothermic nature of the adsorption, whereas the negative values of △Gθ tend (s) to prove the spontaneous nature of the adsorption process.

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Edited by:

Ji Zhao, Aijie Wang, Xinyong Li and Xiaoyi Wang

Pages:

2243-2247

Citation:

C. X. Zhang et al., "Adsorption Equilibrium and Thermodynamics Behavior of Sodium Pentachlorophenol to Biomass-Derived Biochars at Two Pyrolytic Temperatures", Advanced Materials Research, Vols. 955-959, pp. 2243-2247, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] L.G. Freitas, H. Singer, S.R. Müller, R.P. Schwarzenbach and C. Stamm: Agric. Ecosyst. Environ Vol. 128 (2008), pp.177-184.

[2] Y.H. Shih, M.Y. Chen and Y.F. Su: Appl. Catal. B: Environ Vol. 105 (2011), pp.24-29.

[3] E. Tamer, Z. Hamid, A.M. Aly, E.T. Ossama, M. Bo and G. Benoit: Chemosphere Vol. 63: (2006) pp.277-284.

[4] J.A. Zimbron and K.F. Reardon: Water Res. Vol. 45 (2011) pp.5705-5714.

[5] M. Vitkova, K. Dercova, J. Molnarova, L. Tothova, B. Polek and J. Godocikova: Water Air Soil Pollut. Vol. 218 (2011) pp.145-155.

DOI: https://doi.org/10.1007/s11270-010-0630-7

[6] Zhiyue Gao, Bing Du, Guoyan Zhang, Yan Gao, Zejiang Li, Hui Zhang and Xue Duan: Ind. Eng. Chem. Res. Vol. 50 (2011) pp.5334-5345.

DOI: https://doi.org/10.1021/ie101766e

[7] G.K. Vasilyeva, E.R. Strijakova, S.N. Nikolaeva, A.T. Lebedev and P.J. Shea: Environ. Pollut. Vol. 158 (2010) pp.770-777.

[8] K.M. Bushnaf, S. Puricelli, S. Saponaro and D. Werner: J. Contam. Hydrology. Vol. 126 (2011) pp.208-215.

[9] Xiangyang Yu, Changli Mu, Cheng Gu, Cun Liu and Xianjin Liu: Chemosphere Vol. 85 (2011) pp.1284-1289.

[10] Yang Song, Fang Wang, Yongrong Bian, F.O. Kengara, Mingyun Jia, Zubin Xie and Xin Jiang: J. Hazard. Mater. Vol. 217-218 (2012) pp.391-397.

DOI: https://doi.org/10.1016/j.jhazmat.2012.03.055

[11] G. Cornelissen, O. Gustafsson, T. D. Bucheli, M.T.O. Jonker, A. A. Koelmans and P.C. M van Noort: Environ. Sci. Technol. Vol. 39 (2005) pp.6881-6895.

DOI: https://doi.org/10.1021/es050191b

[12] S. Sohn and D. Kim: Chemosphere Vol. 58 (2005) pp.115-123.

[13] Baoliang Chen, Dandan Zhou and Lizhong Zhu: Environ. Sci. Technol. Vol. 42 (2008) p.5137–5143.

[14] Zaiming Chen, Baoliang Chen, Dandan Zhou and Wenyuan Chen: Environ. Sci. Technol. Vol. 46 (2012) pp.12476-12483.

DOI: https://doi.org/10.1021/es303351e