Influence of Machine Hammer Peening on the Tribology of Sheet Forming

Abstract:

Article Preview

The recently developed machine hammer peening process is used at the die shop of the Mercedes-Benz plant in Sindelfingen in order to replace manual surface finish of deep drawing dies. The goal of the process is surface roughness reduction after milling to ensure the tribological properties, which are necessary for the sheet metal forming process. Using machine hammer peening it is also possible to create defined surface structures that may be employed to influence local friction conditions and therewith overcome current limitations of the forming process. To take advantage of the surface structuring capabilities it is necessary to understand how to create defined surface structures using machine hammer peening and how the created structures affect friction and material flow behavior. In this work an approach is presented to describe the interaction of milling and machine hammer peening parameters on the created topography by wave theory. Especially the influence of tool path parameters of milling and consecutive machine hammer peening is investigated. The results, which are calculated using wave theory, are verified by FEM simulations and real experiments. In addition, suitable process parameters for machine hammer peening are derived from the obtained results, as they are used at the Mercedes-Benz die shop today.

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche

Pages:

397-405

Citation:

M. Oechsner et al., "Influence of Machine Hammer Peening on the Tribology of Sheet Forming", Advanced Materials Research, Vols. 966-967, pp. 397-405, 2014

Online since:

June 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] Siegert, K.; Ziegler, M.; Wagner, S., Closed loop control of the friction force, Deep drawing process, In: Journal of Materials Processing Technology 71 (1), S. 126– 133, (1997).

DOI: https://doi.org/10.1016/s0924-0136(97)00158-1

[2] Lin, Zhong-qin; Wang, Wu-rong; Chen, Guan-long: A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming, In: Journal of Materials Processing Technology 183 (2-3), S. 339–346, (2007).

DOI: https://doi.org/10.1016/j.jmatprotec.2006.10.027

[3] Otto, M., Erweiterung der Umformgrenzen beim Tiefziehen und Kragenziehen, Neue Verfahrensvarianten in der Umformtechnik, Saarbrücken: Müller, (2008).

[4] Emrich, A., Systematik zur Robustheitsanalyse von Umformprozessen für Karosseriekomponenten aus Blech, Frankfurt (am Main): DGM Informationsges. Verl. (Beiträge zur Umformtechnik, 68), (2013).

[5] Staeves, J., Beurteilung der Topografie von Blechen im Hinblick auf die Reibung bei der Umformung, Dissertation, TU Darmstadt, (1998).

[6] Sobis, T., Beitrag zur Mechanik der Mischreibung in der Wirkfuge umformtechnischer Prozesse; Prozesssimulation in der Umformtechnik, Bericht aus Prozesssimulation in der Umformtechnik, Band10, Friedrich-Alexander-Universität Erlangen-Nürnberg, Springer Verlag Berlin, (1996).

DOI: https://doi.org/10.1007/978-3-662-06017-9_3

[7] Batalha, G.F., Stipkovic Filho, M., Quantitative characterization of the surface topography of cold rolled sheets-new approaches and possibilities, Journal of Materials Processing Technology, (2001).

DOI: https://doi.org/10.1016/s0924-0136(01)00607-0

[8] Azushima, A., Bay, N., Environmentally Benign Tribo-systems for Metal Forming, CIRP Annals Manufacturing Technology, (2010).

DOI: https://doi.org/10.1016/j.cirp.2010.05.007

[9] Wiklund, D., Rosén, B. -G., Gunnersson, L., Frictional mechanisms in mixed lubricated regime in steel sheet metal forming, Wear 264, (2008).

DOI: https://doi.org/10.1016/j.wear.2006.08.032

[10] Figueiredo, L., Ramalho, A., Oliveira, M.C., Menezes, L.F., Experimental study of friction in sheet metal forming, Wear 271, (2011).

DOI: https://doi.org/10.1016/j.wear.2011.02.020

[11] Wied, J., Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen, Dissertation, TU Darmstadt, (2010).

[12] Johnson, K. L., Contact Mechanics, (1987).

[13] Steitz, M., Scheil, J., Müller, C., Groche P., Effect of Process Parameters on Surface Roughness in Hammer Peening and Deep Rolling, In: Key Engineering Materials, TU Darmstadt, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/kem.554-557.1887

[14] Klocke, F., Trauth, D., Schongen, F., Shirobokov, A., Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap, Springer Verlag Berlin, RWTH Aachen University, (2013).

DOI: https://doi.org/10.1007/s11740-013-0519-6

[15] Bleicher, F., Lechner, C., Habersohn, C., Kozeschnik, E., Adjassoho, B., Kaminski, H., Mechanism of surface modification using machine hammer peening technology, CIRP Annals – Manufacturing Technology, Vienna University of Technology, (2012).

DOI: https://doi.org/10.1016/j.cirp.2012.03.139