Roll Bonding of Two Materials Using Temperature to Compensate the Material Strength Difference

Abstract:

Article Preview

A part with optimized material characteristics can be realized by cladding of two or more materials. In the aerospace industry high strength aluminum alloys like AA2024 are commonly used. Due to their susceptibility to atmospheric corrosion a protective surface layer has to be provided, e.g. pure aluminum. Because of high differences in material strength problems occur during bonding. This study discusses if and how active cooling can be used to create a temperature field which compensates the material strength difference and thus improves roll bonding of two materials of different strength. Cooling simulations were carried out to investigate the influence of the boundary conditions and cooling time before hot rolling for different layer thicknesses. For the example of a thick core (50 mm) and a thinner cover layer (10 mm) the optimal cooling time was determined to be in a range of 3 - 14 s. Furthermore, roll bonding experiments were performed at various height reductions and cooling times to investigate the influence of the material strength differences on the rolling and bonding behavior. Due to the implementation of a cooling operation a varying elongation of the surface layer and the core material has been successfully reduced from 30 to 22 mm.

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche

Pages:

471-480

Citation:

A. Melzner and G. Hirt, "Roll Bonding of Two Materials Using Temperature to Compensate the Material Strength Difference", Advanced Materials Research, Vols. 966-967, pp. 471-480, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] J. Liu, M. Li, S. Sheu, M.E. Karabin, R.W. Schultz, Macro- and micro-surface engineering to improve hot roll bonding of aluminum plate and sheet, Materials Science and Engineering A 479 (2008) 45–57.

DOI: https://doi.org/10.1016/j.msea.2007.06.022

[2] N. Bay, C. Clemensen, O. Juelstrorp, T. Wanheim, Bond Strength in Cold Bonding, Annals of the CRIP 34 (1985) 221–224.

DOI: https://doi.org/10.1016/s0007-8506(07)61760-0

[3] U.S. Department of Transportation, Federal Aviation Administration, Aviation Maintenance Technician Handbook, (2008).

[4] J. Li, Y. Fu, J. Jie, J. Zhao, J. Park, J. Kim et al., Continuous casting of the cladding 3003/4004 aluminum alloy circular ingot, Acta Metallurgica Sinica 49 (2013) 297–302.

DOI: https://doi.org/10.3724/sp.j.1037.2012.00507

[5] A. Vivek, S.R. Hansen, B.C. Liu, G.S. Daehn, Vaporizing foil actuator: A tool for collision welding, Journal of Materials Processing Technology 213 (2013) 2304–2311.

DOI: https://doi.org/10.1016/j.jmatprotec.2013.07.006

[6] G. Heigl, G. Tischler, Verfahren zur Herstellung von metallurgisch plattierten Blechen, stahl und eisen 128 (2008) 59–74.

[7] W. Zhang, N. Bay, A numerical Model for cold Welding of Metals, Annals of the CIRP 45 (1996) 215–220.

DOI: https://doi.org/10.1016/s0007-8506(07)63050-9

[8] M. Eizadjou, H. Danesh Manesh, K. Janghorban, Mechanism of warm and cold roll bonding of aluminum alloy strips, Materials and Design 30 (2009) 4156–4161.

DOI: https://doi.org/10.1016/j.matdes.2009.04.036

[9] L. Li, Nagai, K. Yin, F., Progress in cold roll bonding of metals, Science and Technology of Advanced Materials 9 (2008) 1–11.

[10] F. -W. Bach, D. Bormann, M. Rodmann, H. Haverkamp, Hybrides Walzen am Beispiel von Titan-Aluminium-Verbunden, Materialwissenschaft und Werkstofftechnik 39 (2008) 588–593.

DOI: https://doi.org/10.1002/mawe.200800328

[11] M. Buchner, B. Buchner, B. Buchmayr, H. Kilian, F. Riemelmoser, Investigation of different parameters on roll bonding quality of aluminium and steel sheets, International Journal of Material Forming 1 (2008) 1279–1282.

DOI: https://doi.org/10.1007/s12289-008-0136-7

[12] Deutsches Institut für Normung e.V., Luft- und Raumfahrt – Aluminiumlegierung AL-P2024-T351 – Bleche und Bänder, plattiert mit besserer Eignung zum chemischen Fräsen, 1, 6 mm ≤ a ≤ 6 mm(4001).

[13] E. Doege, H. Meyer-Nolkemper, I. Saeed, Fließkurvenatlas metallischer Werkstoffe: Mit Fließkurven für 73 Werkstoffe und einer grundlegenden Einführung, Carrl Hanser Verlag, München, (1986).

[14] Online Materials Information Resource, [12/2013], http: /matweb. com/search/DataSheet. aspx?MatGUID=67d8cd7c00a04ba29b618484f7ff7524.

[15] M. Spittel, T. Spittel, Al 99. 5, in: W. Martienssen, H. Warlimont (Eds. ), Part 2: Non-ferrous Alloys - Light Metals, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, p.197–203.

DOI: https://doi.org/10.1007/978-3-642-13864-5_30

[16] M. Spittel, T. Spittel, AlCu4Mg1, in: W. Martienssen, H. Warlimont (Eds. ), Part 2: Non-ferrous Alloys - Light Metals, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, p.233–238.

DOI: https://doi.org/10.1007/978-3-642-13864-5_36

[17] M.P. Phaniraj, B.B. Behera, A.K. Lahiri, Thermo-mechnical modeling of two phase rolling and microstructure evolution in the hot strip mill: Part I. Prediction of rolling loads and finish rolling temperature, Journal of Materials Processing Technology 170 (2005).

DOI: https://doi.org/10.1016/j.jmatprotec.2005.05.009