Formation of Joining Mechanisms in Friction Stir Welded Dissimilar Al-Ti Lap Joints


Article Preview

Friction Stir Welding (FSW) is a suitable technology for joining dissimilar materials. As the process temperature during FSW typically does not exceed the solidus temperature, like in fusion welding, high quality joints can be produced with a minimum of intermetallic phases. A comprehensive description of the effective joining mechanisms of friction stir welded dissimilar material joints is still subject of research. In this study the results of an analysis of the effect of the pin length, which is supposed to have a significant influence on the characteristics of the joining mechanisms, are presented. Especially the influence on the bonding conditions and the mechanical properties of the joints has been investigated. For this purpose combinations of aluminum and titanium have been welded with varying pin length at different rotational speeds. The experiments show that at a sufficient distance between the interface zone and the pin tip the bonding is realized by a substance-to-substance bond and microscopic form-fit. As this distance decreases, a visible macroscopic form-fit is generated. However, this macroscopic form-fit causes no significant elevation of the joint strength. First scanning transmission electron microscopy (STEM) images reveal an interfacial layer, which indicates a diffusion of the two materials.



Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche






M. Krutzlinger et al., "Formation of Joining Mechanisms in Friction Stir Welded Dissimilar Al-Ti Lap Joints", Advanced Materials Research, Vols. 966-967, pp. 510-520, 2014

Online since:

June 2014




* - Corresponding Author

[1] Li, X. -w.; Zhang, D. -t.; Qiu, C.; Zhang, W.: Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding, Transactions of Nonferrous Metals Society of China, 2012, 22, p.1298–1306.

DOI: 10.1016/s1003-6326(11)61318-6

[2] Saeid, T.; Abdollah-zadeh, A.; Sazgari, B.: Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding, Journal of Alloys and Compounds, 2010, 490, p.652–655.

DOI: 10.1016/j.jallcom.2009.10.127

[3] Xue, P.; Ni, D.; Wang, D.; Xiao, B.; Ma, Z.: Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints, Materials Science and Engineering: A, 2011, 528, p.4683–4689.

DOI: 10.1016/j.msea.2011.02.067

[4] Kwon, Y.; Shigematsu, I.; Saito, N.: Dissimilar friction stir welding between magnesium and aluminum alloys, Materials Letters, 2008, 62, p.3827–3829.

DOI: 10.1016/j.matlet.2008.04.080

[5] Venkateswaran, P.; Reynolds, A.: Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys, Materials Science and Engineering: A, 2012, 545, p.26–37.

DOI: 10.1016/j.msea.2012.02.069

[6] Coelho, R.; Kostka, A.; dos Santos, J.; Kaysser-Pyzalla, A.: Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure, Materials Science and Engineering: A, 2012, 556, p.175.

DOI: 10.1016/j.msea.2012.06.076

[7] Kimapong, K.; Watanabe, T., 2005: Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding. In: The Japan Institute of Metals and Materials (Ed. ), Materials Transactions, Bd. 4 (46), p.835–841.

DOI: 10.2320/matertrans.46.835

[8] Watanabe, T.; Takayama, H.; Yanagisawa, A.: Joining of aluminum alloy to steel by friction stir welding, Journal of Materials Processing Technology, 2006, 178, p.342–349.

DOI: 10.1016/j.jmatprotec.2006.04.117

[9] Liao, J.; Yamamoto, N.; Liu, H.; Nakata, K.: Microstructure at friction stir lap joint interface of pure titanium and steel, Materials Letters, 2010, 64, p.2317–2320.

DOI: 10.1016/j.matlet.2010.07.049

[10] Kostka, A.; Coelho, R.; Dos Santos, J.; Pyzalla, A. Microstructure and properties of Al to steel friction stir overlap welds, 7th International Friction Stir Welding Proceedings, Awaji Island, Japan, (2008).

DOI: 10.1016/j.scriptamat.2009.02.020

[11] Uzun, H.; Dalle Donne, C.; Argagnotto, A.; Ghidini, T.; Gambaro, C.: Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel, Materials & Design, 2005, 26, p.41–46.

DOI: 10.1016/j.matdes.2004.04.002

[12] Dressler, U.; Biallas, G.; Alfaro Mercado, U.: Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3, Materials Science and Engineering: A, 2009, 526, p.113–117.

DOI: 10.1016/j.msea.2009.07.006

[13] Chen, Y.; Liu, C.; Liu, G.: Study on the Joining of Titanium and Aluminum Dissimilar Alloys by Friction Stir Welding, Open Materials Science Journal, 2011, 5, p.256–261.

DOI: 10.2174/1874088x01105010256

[14] Chen, Y. -h.; Ni, Q.; Ke, L. -m.: Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys, Transactions of Nonferrous Metals Society of China, 2012, 22, p.299–304.

DOI: 10.1016/s1003-6326(11)61174-6

[15] Aonuma, M.; Nakata, K.: Dissimilar Metal Joining of 2024 and 7075 Aluminium Alloys to Titanium Alloys by Friction Stir Welding, MATERIALS TRANSACTIONS, 2011, 52, p.948–952.

DOI: 10.2320/matertrans.l-mz201102

[16] Murr, L.: A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. of Materi Eng and Perform, 2010, 19, p.1071–1089.

DOI: 10.1007/s11665-010-9598-0

[17] Cederqvist, L.; Reynolds, A. Properties of Friction Stir Welded Aluminum Lap Joints, Proceedings of the 2nd Friction Stir Welding Symposium, Gothenburg, Sweden, (2000).

DOI: 10.1108/aa.2000.03320bab.005

[18] Lienert, T., 2007: Microstructure and Mechanical Properties of Friction Stir Welded Titanium Alloys. In: Rajiv Mishra und M. Mahoney (Eds. ), Friction Stir Welding and Processing. 1. Aufl.: ASM Intl., p.123–154.

DOI: 10.1002/9781118062302.ch32

[19] Buffa, G.; Campanile, G.; Fratini, L.; Prisco, A.: Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties, Materials Science and Engineering: A, 2009, 519, p.19–26.

DOI: 10.1016/j.msea.2009.04.046

[20] Maier, V.; Höppel, H.; Göken, M.: Nanomechanical behaviour of Al-Ti layered composites produced by accumulative roll bonding, J. Phys.: Conf. Ser., 2010, 240, p.12108.

DOI: 10.1088/1742-6596/240/1/012108

[21] Fuji, A.: In situ observation of interlayer growth during heat treatment of friction weld joint between pure titanium and pure aluminium, sci. tech. weld. join, 2002, 7, p.413–416.

DOI: 10.1179/136217102225006903

[22] Seitz, F.: On the Theory of Vacancy Diffusion in Alloys, Phys. Rev., 1948, 74, p.1513–1523.

[23] van Loo, F.J.J.; Rieck, G.: Diffusion in the titanium-aluminium system - I. Interdiffusion between solid Al and Ti or Ti-Al Alloys, ACTA METALLURGICA, 1973, 21, p.61–71.

DOI: 10.1016/0001-6160(73)90220-4

In order to see related information, you need to Login.