Realization of Al/Mg-Hybrid-Joints by Ultrasound Supported Friction Stir Welding - Mechanical Properties, Microstructure and Corrosion Behavior


Article Preview

Fusion welding of dissimilar metals is in the most cases difficult or even impossible as a result of different melting points and the development of undesirable brittle intermetallic phases. This often leads to joint strengths considerable below the tensile strength of the base materials. By using Friction Stir Welding (FSW) it is possible to reduce the development of the intermetallic phases of Al/Mg-joints significantly but not to avoid them completely. Hence a hybrid welding system at the WKK of the University of Kaiserslautern was developed called “Ultrasound Supported Friction Stir Welding (US-FSW)” with the aim to shatter the brittle interlayer lines and to scatter fragments in the welding area during the FSW process. Pre-investigations have shown that for Al/Mg-US-FSW-joints the strength can be increased up to 30% in comparison to conventional FSW. Moreover for the reliable detection of nonconformities in the weld during a post-process inspection by suitable non-destructive testing (NDT) methods is necessary. Also there is a strong need for better process monitoring and control by in-process NDT methods. Furthermore the corrosion behavior of the basic materials and hybrid-joints was investigated by electrochemical methods indicating an increased corrosion of the Mg alloy in the area of the Al/Mg-butt weld.



Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche




B. Strass et al., "Realization of Al/Mg-Hybrid-Joints by Ultrasound Supported Friction Stir Welding - Mechanical Properties, Microstructure and Corrosion Behavior", Advanced Materials Research, Vols. 966-967, pp. 521-535, 2014

Online since:

June 2014




* - Corresponding Author

[1] Böhme D.; Nentwig A.; Cramer H.: Arc Welding of Magnesium Alloys, Welding & Joining, New Materials & New Perspectives, (2000).

[2] Ericsson M.; Sandström R.: Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, International Journal of Fatigue 25, Elsevier, (2003).


[3] Khaled T.: An Outsider looks at Friction Stir Welding, Federal Aviation Administration, (2005).

[4] Sheikhi S.; Zettler R.; dos Santos J. F.: Fortschritte beim Rührreibschweißen von Aluminium, Magnesium und Stahl, Mat. -wiss. und Werkstofftech. 37, No. 9, WILEY-VCH Verlag, Weinheim, (2006).


[5] Schofer E.: Rührreibschweißen – Wärmearmes Verbinden von Aluminiumlegierungen, Mat. -wiss. und Werkstofftech. 30, pp.693-696, WILEY-VCH Verlag, Weinheim, (1999).


[6] Klag O.; Gröbner J.; Wagner G.; Schmid-Fetzer R.; Eifler D.: Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints, International Journal of Materials Research, accepted on Sep 12, (2013).


[7] Klag O.; Wagner G.; Eifler D.: Mechanical Properties of Friction Stir Welded Mg/Mg- and Mg/Al-Joints. Advanced Engineering Materials 12, (2010).


[8] Kainer K. U.: Magnesium Alloys and their Applications, WILEY-VCH Verlag, Weinheim, (2006).

[9] Wang K.; Shen Y.; Yang X.; Wang X.; Xu K.: Evaluation of Microstructure and Mechanical Property of FSW Welded MB3 Magnesium Alloy, Journal of Iron and Steel Research, 13(4), pp.75-78, Science Direct, (2006).


[10] Zettler R.; da Silva A.; Rodrigues S.; Blanco A.; dos Santos J. F.: Dissimilar Al to Mg Alloy Friction Stir Welds, Advanced Engineering Materials, Special Issue: 50 Years Materials Research at GKSS, Volume 8, Issue 5, p.415–421, WILEY-VCH Verlag, Weinheim, (2006).


[11] Kostka A.; Coelho R. S.; dos Santos J. F.; Pyzalla A. R.: Microstructure of friction stir welding of aluminium alloy to magnesium alloy; Scripta Materialia 60, p.953–956, (2009).


[12] NCAM: Friction Stir Welding, - 18. 10. (2009).

[13] Thompson J.: Space Shuttle ET Friction Stir Weld Machines, TWI: Proceedings of the 4th International Friction Stir Welding Symposium, Cambridge, (2003).

[14] Midling O. T.; Kvale J. S.; Dahl O.: Industrialisation of the Friction Stir Welding Technology in Panels Production for the Maritime Sector, TWI: Proceedings of the 1st International Friction Stir Welding Symposium, Thousand Oaks, (1999).

[15] MTS Systems Corporation: ISTIR (TM) Process Development System (PDS), Eden Prairie, (2003).

[16] MTS Systems Corporation: I-STIR (TM) BR4 Friction Stir Welding System, Eden Prairie, (2004).

[17] Andersson C. G.; Andrews R. E.: Fabrication Containment Canisters for Nuclear Waste by Friction Stir Welding, TWI: Proceedings of the 1st International Friction Stir Welding Symposium, Thousand Oaks, (1999).

[18] Gebhard P.; Zaeh M. F.: Force control design for cnc-milling machines for friction stir welding, TWI: Proceedings of the 7th International Friction Stir Welding Symposium, Cambridge, (2006).

[19] Mathers G.: The welding of aluminium and its alloys, Woodhead Publishing, Cambridge (2002).

[20] Jene T.: Entwicklung eines Verfahrens zur prozessintegrierten Prüfung von Rührreib-schweißungen des Leichtbaus sowie Charakterisierung des Ermüdungsverhaltens der Fügungen, Werkstoffkundliche Berichte, TU Kaiserslautern, Kaiserslautern, 21, (2008).

[21] Golde H. -D.: Ultraschall-Metallschweißen, Verlag Moderne Industrie, Landsberg/Lech, (1995).

[22] Lamarre A.; Moles M.: Ultrasound Phased Array Inspection Technology for the Evaluation of Friction Stir Welds, Proc. 15th World Conference on Non-Destructive Testing, Session Aeronautics and Aerospace, Rome, (2000).

[23] Bird C. R.: Ultrasonic phased array inspection technology for the evaluation of friction stir welds, Insight 46 (1), pp.31-36, (2004).


[24] Lamarre A.; Dupuis O.; Moles M.: Complete Inspection of Friction Stir Welds in Aluminum using Ultrasonic and Eddy Current Arrays, Proc. 16th WCNDT - World Conference on NDT, Paper 84, Montreal, (2004).

[25] Schnars U.; Henrich R.; Bisle W.; Elze S.; Hicken H.; Kethler J.; Pieles W.; Kück A.; Müller S.: Erfahrungen mit der Nutzung moderner mobiler Gruppenstrahler-Prüfsysteme für die ZfP von Flugzeugstrukturkomponenten in Fertigung und Wartung, Proc. DGZfP-Jahrestagung, Rostock, (2005).

[26] Ronneteg U.; Müller C.; Pavlovic M.: Reliability in NDT of Canister for the Swedish Spent Nuclear Fuel, Proc. 4th European-American Workshop on Reliability of NDE, Paper Fr. 1.A. 1, Berlin, (2009).

[27] Jene T.; Dobmann G.; Wagner G.; Eifler D.: Monitoring of the Friction Stir Welding Process to Describe Parameter Effects on Joint Quality, Welding in the world 52, pp.97-100, (2008).


[28] Thomas W. M.; Nicholas E. D.; Threadgill P. L.: Tool Technology - the heart of friction stir welding, Connect 107 (3), (2000).

[29] Zettler R.: Werkzeugdesign und Prozesskräfte, Proc. GKSS Workshop Rührreibschweißen, (2005).

[30] Jene T.; Dobmann G.; Wagner G.; Eifler D.: Oxide Fragments in Friction Stir Welds - Distribution and Effects on Crack Initiation, Proc. 6th International Friction Stir Welding Symposium, Paper 65, Saint Sauveur, (2006).


[31] Schneider E.: Untersuchung der materialspezifischen Einflüsse und verfahrenstechnische Entwicklungen der Ultraschallverfahren zur Spannungsanalyse an Bauteilen, Dissertation, RWTH Aachen, Fraunhofer IRB Verlag Stuttgart, (2000).

[32] Schneider E.: Ultrasonic Characterization of State and Properties of Aluminium Structures, Proc. Euro Mat '97, p.4/35-4/38, Zwijndrecht, (1997).

[33] Feliu Jr. S.; Pardo A.; Merino M. C.; Coy A. E.; Viejo F.; Arrabal R.: Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys, Appl. Surf. Sci. 225, (2009).


[34] Ben-Haroush M.; Ben-Hamu G.; Eliezer D.; Wagner L.: The relation between microstructure and corrosion behaviour of AZ80 Mg alloy following different extrusion temperatures, Corros. Sci. 50, (2008).


[35] Belov N. A.; Eskin D. G.; Avxentieva N. N.: Constituent phase diagrams of Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys, Acta Mater. 53, (2005).