Friction Press Joining of Laser-Texturized Aluminum with Fiber Reinforced Thermoplastics

Abstract:

Article Preview

Friction Press Joining (FPJ) is a suitable method for producing composites of aluminum and thermoplastics in lap joint configuration, which is based on modified Friction Stir Welding (FSW). During the joining process, a rotating cylindrical tool is pressed onto an aluminum surface. The resulting friction generates heat that is conducted to the bonding zone, leading to localized softening of the thermoplastics. In combination with the tool’s axial force and a suitable pre-treatment of the aluminum surface, a resilient composite compound is created. This paper presents the results of a surface pre-treatment of aluminum using laserradiation. The textures are essential for a strong connection, as they can significantly influence effective joining mechanisms, such as microscopic and macroscopic form fit. The experiments were carried out using different surface treatments by means of a single-mode laser for joints of aluminum (EN AW-6082 T6) and glass fiber reinforced polyamide (PA6 GF15). The aim of the study was an increased understanding of process behavior and joining mechanisms. The shear strength could be increased by 40 % compared to previous studies with the presented laser surface treatment.

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche

Pages:

536-545

Citation:

F. X. Wirth et al., "Friction Press Joining of Laser-Texturized Aluminum with Fiber Reinforced Thermoplastics", Advanced Materials Research, Vols. 966-967, pp. 536-545, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] Wirth, F. X.; Ruhstorfer, M.; Zäh, M. F.: Mischverbindungen durch Reibpressfügen. wt Werkstattstechnik online - Edition 9-2011, (2011) 9, p.564–569.

[2] Wirth F. X.; Zäh M. F.; Silvanus J.: Reibpressfügen von Aluminium mit thermoplastischen Kunststoffen. In: 6. FSW-Workshop Rührreibschweißen und verwandte Verfahren. Geesthacht, 7. -8. February (2013).

[3] Amend, P.; Pfindel, S.; Schmidt, M.: Thermal Joining of Thermoplastic Metal Hybrids by Means Of Mono- and Polychromatic Radiation. In: Physics Procedia 41 (2013), p.98–105.

DOI: https://doi.org/10.1016/j.phpro.2013.03.056

[4] Roesner, A.; Scheik, S.; Olowinsky, A.; Gillner, A.; Reisgen, U.; Schleser, Markus: Laser Assisted Joining of Plastic Metal Hybrids. In: Physics Procedia 12 (2011), p.370–377.

DOI: https://doi.org/10.1016/j.phpro.2011.03.146

[5] Holtkamp, J.; Roesner, A.; Gillner, A.: Advances in hybrid laser joining. In: The International Journal of Advanced Manufacturing Technology 47 (2010) 9-12, p.923–930.

DOI: https://doi.org/10.1007/s00170-009-2124-6

[6] Rechner, R.: Laseroberflächenbehandlung von Aluminium zur Optimierung der Oxidschichteigenschaften für das strukturelle Kleben, Dissertation, Technische Universitaet Dresden (2011).

[7] Earl, C.; Hilton, P.; O'Neill, B.: Parameter Influence on Surfi-Sculpt Processing Efficiency. In: Physics Procedia 39 (2012), p.327–335.

DOI: https://doi.org/10.1016/j.phpro.2012.10.045

[8] Berger, P.; Hügel, H.; Hess, A.; Weber, R.; Graf, T.: Understanding of Humping Based on Conservation of Volume Flow. In: Physics Procedia 12 (2011), p.232–240.

DOI: https://doi.org/10.1016/j.phpro.2011.03.030

[9] M. F. Zaeh, J. Moesl, J. Musiol, F. Oefele.: Material processing with remote technology revolution or evolution?. In: M. Schmidt, F. Vollertsen, M. Geiger (Eds. ), Laser assisted net shape engineering 6: Proceedings of the LANE 2010, Erlangen, September 21-24, 2010, pp.19-33.

DOI: https://doi.org/10.1016/j.phpro.2010.08.119