Material Characterization for FEA of the Clinching Process of Short Fiber Reinforced Thermoplastics with an Aluminum Sheet

Abstract:

Article Preview

Multi-material and hybrid constructions are increasingly used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies, and thereby lead to effective reductions of fuel consumption. In this respect, the use of aluminum and short fiber reinforced plastics represents an interesting material combination. A full exploitation of such a material combination requires a suitable joining technique. Among different joining techniques, clinching represents one of the most appealing alternatives for automotive applications. This contribution deals with the experimental tests for determination of material behaviour of two representative materials PA6GF30 and EN AW 5754, which are used for parameterization of material models needed for numerical analysis of the clinching process using the FE software LS-DYNA. With regard to the material modeling of the aluminum sheet, an isotropic material model based on the von Mises plasticity implemented in LS-DYNA was chosen. For the description of the strain hardening behaviour of the aluminum sheet at high equivalent plastic strains, the hydraulic bulge test was carried out in addition to the uniaxial tensile test. For modeling of the short fiber reinforced thermoplastic a semi-analytical model for polymers (SAMP-1) available in LS-DYNA was taken. This material model uses an isotropic pressure dependent yield surface for the description of homogeneous materials. Finally, the FE model of clinching process is presented and an outlook of planned activities is given in terms on determination of the yield surface and hardening behaviour of PA6GF30 at high plastic strains.

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Edited by:

Peter Groche

Pages:

557-568

Citation:

B. A. Behrens et al., "Material Characterization for FEA of the Clinching Process of Short Fiber Reinforced Thermoplastics with an Aluminum Sheet", Advanced Materials Research, Vols. 966-967, pp. 557-568, 2014

Online since:

June 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] Ultramid® (PA), Hauptbroschüre, Ultramid® für den Automobilbau, BASF-The Chemical Company.

[2] Behrens, B. -A., Bouguecha, A., Eckold, C. -P., Peshekhodov, I., 2012. A new clinching process especially for thin metal sheets and foils. The 15th international ESAFORM Conference on Material Forming, University of Erlangen, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/kem.504-506.783

[3] Behrens, B. -A., Hübner, S. Eckold, C. -P., Schnapp, J. D., 2008. Reducing damage of coating caused by clinching of aluminum sheet metal by process optimization. The 9th international conference on technology of plasticity, (2008).

[4] Beyer, U., 2012. Multi-Material-Fügen mittels Flach-Clinch-Technologie, Dissertation, Band 6, Technische Universität Chemnitz, (2012).

[5] DVS - Deutscher Verband für Schweißen und verwandte Verfahren e.V. / EFB - Europäische Forschungsgesellschaft für Blechverarbeitung e.V.: Merkblatt DVS/EFB 3420-1: Clinchen- Grundlagen / Clinching-basics, unpublished edition, Düsseldorf, (2011).

[6] Zohdi, T., and WRIGGERS, P., (2001a), Aspects of the computational testing of properties of microheterogeneous material samples, Inter. J. Meth. Eng., vol. 50, p.2573–2599.

DOI: https://doi.org/10.1002/nme.146

[7] Gusev, A.A., Hine, P.J., and Ward, I.M. (2000), Fiber packing and elasticity properties of a transversely random unidirectional glass/epoxy composite. Composites Science and Technology, vol 60, p.535–4.

DOI: https://doi.org/10.1016/s0266-3538(99)00152-9

[8] Scheider, I. Chen, Y. Hinz, A. Huber, N. Mosler, J. Size effects in short fibre reinforced composites, Engineering Fracture Mechanics 100 (2013) 17–27.

DOI: https://doi.org/10.1016/j.engfracmech.2012.05.005

[9] Behrens, B. -A., Hübner S., Götze T., Grbic N., 2013. Clinchen eines kurzfaserverstärkten Thermoplasten mit einem Aluminiumblechwerkstoff, 20. Sächsische Fachtagung Umformtechnik, Dresden, 2013, pp.53-62.

[10] Sigvant, M., Mattiason, K., Vegter, H., Thilderkvist, P., 2009. A viscous pressure bulge test for the determination of a plastic hardening curve and equibiaxial material data, International Journal of Material Forming 2, 2009, pp.235-242.

DOI: https://doi.org/10.1007/s12289-009-0407-y

[11] Keller, S.P., 1961. Plastic Instability and Fracture in Sheets Strechedover Rigid Punches, Ph.D. Thesis, MIT, Boston, USA, (1961).

[12] Keller, S., Hotz, H., Friebe, H., Klein, M., 2009. Experimental procedure in yield curve determination using the bulge test combined with optical measurement, in: Proceedings of the IDDRG Conference, (2009).

[13] Vucetic, M., Bouguecha, A., Peshekhodov, I., Götze, T., Huinink, T., Friebe, H., Moeller, T., Behrens, B. -A., 2011. Numerical validation of the analytical biaxial true stress-true strain curves from the bulge test, in: Proceedings of the Numisheet Conference, (2011).

DOI: https://doi.org/10.1063/1.3623599

[14] Junginger, M., 2002. Charakterisierung und Modellierung unverstärkter thermoplastischer Kunststoffe zur numerischen Simulation von Crashvorgängen, Dissertation, EMI-Bericht 15/02, Universität der Bundeswehr München. Fakultät für Bauingenieur- und Vermessungswesen (2002).

[15] Schöpfer, J. 2011. Spritzgussbauteile aus kurzfaserverstärkten Kunststoffen: Methoden der Charakterisierung und Modellierung zur nichtlinearen Simulation von statischen und chrashrelevanten Lastfällen, Dissertation, Technische Universität Kaiserslautern, (2011).

[16] Becker, F., Kraatz, A., Moneke, M., 2007. Determination of the mechanical properties of oriented short fiber reinforced thermoplastics under different stress states, 6. LS-Dyna Anwenderforum, Frankenthal, (2007).

[17] Arcan, M., 1973. A new method for the analysis of mechanical properties of composite materials, 3rd international congress on experimental mechanics, Los Angeles, USA, (1973).

[18] Kolling, S., Haufe, A., Feucht, M., Du Bois, P.A., 2005. SAMP-1: A Semi-Analytical Model for the Simulation of Polymers, 4. LsDyna Anwenderforum, Bamberg, (2005).

[19] Vogler, M., Kolling, S., Haufe, A., 2007. A constitutive model for plastics with piecewise linear yieldsurface and damage. In 6. LS-DYNA Forum (S. B-II-13–30).

[20] Vogler, M., 2011. Viscplastische Stoffgesetze für Thermoplaste in LS-DYN: Theorie und Aspekte der Programmierung. New York: VDM Verlag.

[21] LS-DYNA®, Keyword User's Manual, Volume I, Livermore Software Technology Corporation (LSTC), (2009).

[22] Banabic D., 2010, Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation, Springer Verlag, (2010).

[23] Vogler, M., Andrade, F., Schöpfer, J., Kolling, S. & Rolfes, R. " A novel transversely-isotropic 3D elastic-viscoplastic constitutive law for modeling fiber matrix composite [Conference Proceedings, Download: www. dynalook. com/]. In 8th European LS-DYNA Users Conference. Strasbourg, France, 23 - 24 May, (2011).

[24] Vogler, M., Rolfes, R. and Camanho, P.P. Modeling the inelastic deformation and fracture of polymer composites – part I: plasticity model., Mechanics of Materials, Volume 59, pp.50-64, April (2013).

DOI: https://doi.org/10.1016/j.mechmat.2012.12.002

[25] Lambi, M., 2011. Predicting performance of thermoplastic composites taking into account the fiber orientation effects utilizing ULTRASIMTM technology, BASF Engineering plastics, SPE ACCE conference, 2011, Michigan.

[26] Günzel S., 2013. Analyse der Schädigungsprozesse in einem kurzfaserverstärkten Polyamid unter mechanischer Belastung mittels Röntgenrefraktometrie, Bruchmechanik und Fraktografie, BAM-Dissertationsreihe, Band 97, Berlin, (2013).

[27] Reithofer P., Fritz M., Wimmer T., 2008. Kurzfaserverstärkte Kunststoffbauteile Einfluss der prozessbedingten Faserorientierung auf die Strukturmechanik, 7. LS-DYNA Anwenderforum, Bamberg, (2008).

Fetching data from Crossref.
This may take some time to load.