Sherardizing and Characteristic of Zinc Protective Coating on High-Strength Steel Bridge Cable Wires


Article Preview

Zinc protective coatings on high carbon SWRH82B-1 steel were sherardized to markedly improve corrosion resistance of the high-strength steel bridge cable wires (SBCW). Sherardizing parameters have been optimized by optical microscopy (OM) /scanning electron microscopy (SEM), X-ray diffraction (XRD) and potentiodynamic polarization tests. The sherardizing coatings are composed of the loose outer layer (§-FeZn13 phase) and the dense inner layer (δ- FeZn7 phase) with higher hardness. Addition of Y2O3 activator slightly increases the corrosion resistance of sherardized steel wire in comparison with CeO2. A thicker coating corresponds to a higher sherardizing temperature or a longer heating duration, but an extra thick coating is unfavorable for thru-microcrack existed in the inner layer. Good quality of sherardized wires ( higher corrosion resistance and longer duration than conditional hot-dip-galvanized one) can be produced with the zinc-rich powder containing 7.5wt.% CeO2 activator and 25wt. % SiO2 filler under 400°Cfor 6h.



Advanced Materials Research (Volumes 97-101)

Edited by:

Zhengyi Jiang and Chunliang Zhang






J. H. Jiang et al., "Sherardizing and Characteristic of Zinc Protective Coating on High-Strength Steel Bridge Cable Wires ", Advanced Materials Research, Vols. 97-101, pp. 1368-1372, 2010

Online since:

March 2010




[1] J. M. Walton: J. Construct. Steel Res. Vol. 39(1996), p.3.

[2] F. Biondini, D. M. Frangopol, P. G. Malerba: Probabilistic Engineering Mechanics Vol. 23(2008), p.509.

[3] F. Kazuhiko, K. Makoto, N. Shunichi, S. Keita: Structural Engineering International Vol. 10(2000), p.189.

[4] T. Toshimi, M. Naoki, E. Tatsuya, K. Shinichi: Structural Engineering International Vol. 12(2002) , p.209.

[5] A. R. Marder: Prog. Mater. Sci. Vol. 45 (2000), p.191.

[6] A. Dufresne, G. Perrault, C. Roy, G. Lauzon, D. Michaud, M. Baril: Ann. occup. Hyg. Vol. 32(1988), p.179.

[7] B. Remun, P. Koster, D. Houthuu, J. Boleij, H. Willems, B. Brunekreef, K. Biersteker, C. V. Loveren: Ann. occup. Hyg. Vol. 25(1982), p.299.

[8] G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, P. Patsalas, G. Stergioudis, D. Tsipas, E.K. Polychroniadis: Surf. Coat. Technol. Vol. 200 (2006), p.6594.

DOI: 10.1016/j.surfcoat.2005.11.039

[9] Y. Li: Bulletin of Materials Science Vol. 24(2001), p.355.

[10] H. Park, J. A. Szpunar: Corros. Sci. Vol. 40(1998) , p.525.

[11] ASM Handbook, Hot Dip Coatings-Corrosion, vol. 13, ASM, New York, (1999).

[12] B. Chatterjee: Metal Finishing Vol. 102(2004), p.40.

[13] Y. A. Balandin, A. S. Kolpakov, E. V. Zharkov: Protection of Metals Vol. 42(2006), p.345.

[14] O. T. de Rincon, J. Ludovic, E. Huerta, N. Romero, M. F. de Romero, O. Perez, W. Campos, A. Navarro: Materials Performance Vol. 36(1997), p.28.

[15] Information on http: /www. crct. polymtl. ca/FACT/documentation.

[16] A. P. Yadav, A. Nishikata, T. Tsuru: Corros. Sci. Vol. 46 (2004) , p.169.

[17] H. H. Lee, D. Hiam: Corrosion (NACE Publication, 1989).

[18] T. K. Rout, N. Banyopadhyay, T. Venugopalan, D. Bhattacharjee: Corros. Sci. Vol. 47 (2005) , p.2841.

In order to see related information, you need to Login.