Growth Behaviour of ZnO on Si (100) and Platinum Coated Glass Substrate from Aqueous Solution

Abstract:

Article Preview

Zinc oxide nanorods were grown on Si (100) and Platinum coated glass substrate by the aqueous chemical growth (ACG) in aqueous solution that contained zinc nitrate hexahydrate (Zn(NO3)2•6H20) and hexamethylenetetramine (C6H12N4). The obtained ZnO nanorods are uniformly distributed on the Platinum coated glass substrate surface from 1.5 h to 3 h growth time. Branched hexagonal rods were also found growth on these uniform nanorods. Branched hexagonal rods were found on Si (100) from 2 h to 3 h growth time. A small number of flower-like structures compared to the majority oval type structure suggest that secondary nucleation had occurred during the process of growth. All of the high intensity peaks, including the strong (101) peak, are assigned to wurtzite ZnO hexagonal indicating that the product is pure ZnO. The results found in this study revealed that the type substrate plays a role in determining the surface morphology of ZnO growth.

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Edited by:

Zhengyi Jiang and Chunliang Zhang

Pages:

1550-1553

DOI:

10.4028/www.scientific.net/AMR.97-101.1550

Citation:

M.A. Bakar et al., "Growth Behaviour of ZnO on Si (100) and Platinum Coated Glass Substrate from Aqueous Solution", Advanced Materials Research, Vols. 97-101, pp. 1550-1553, 2010

Online since:

March 2010

Export:

Price:

$35.00

[1] M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, J. Crystal Growth 268 (2004) 149.

[2] L. Vayssieres, Adv. Mater. 15 (2005), p.464.

[3] P. S. Kumar, A. D. Raj, D. Mangalaraj, D. Nataraj, Appl. Surf. Sci. 255 (2008) 2382-2387. (100) (002) (101).

[4] B. Postels, M. Kreye, H. -H. Wehmann, A. Bakin, N. Boukos, A. Travlos, A. Waag. Superlattices and Microstructures 42 (2007) 425-430.

DOI: 10.1016/j.spmi.2007.04.045

[5] X. Liu, Z. Jin, S. Bu, J. Zhao, Z. Liu. J. Am. Ceram. Soc. 89 (2006) 1226-1231.

[6] S. Baruah, J. Dutta. J. Crystal Growth 311 (2009) 2549-2554.

[7] S. S. -Guzman, B. RJayan, E. D. l. Rosa, A. T. -Castro, V. G. -Gonzalez, M. J. -Yacaman. Materials Chemistry and Physics 115 (2009) 172-178.

[8] C. Yan, D. Xue. Journal of Crystal Growth 310 (2008) 1836-1840.

[9] J.P. Cheng, Z.M. Liao, D. Shi, F. Liu, X.B. Zhang. Journal of Alloys and Compounds 480 (2009) 741-746.

[10] Wei Bai, Xia Zhu, Ziqiang Zhu, Junhao Chu. Applied Surface Science 254 (2008) 6483- 6488.

DOI: 10.1016/j.apsusc.2008.04.033

[11] O. Krichevsky, J. Stavans. Physical Review Letters, 70 (10) (1993) pp.1473-1476.

[12] Z. L. Wang. J. Phys.: Condens. Matter 16 (2004) R829 - R858.

[13] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott. J. Am. Chem. Soc. 124 (2002), pp.12954-12955.

[14] O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, H. Heinrich. Materials Science and Engineering B 145 (2007) 57-66.

[15] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R. P. H. Chang, Chem. Mater. 17 (5) (2005) 1001-1006.

In order to see related information, you need to Login.