Investigation on Thermomechanical Treatment of PM FGH4096 Superalloy

Abstract:

Article Preview

Thermomechanical treatment (TMT) of PM FGH4096 superalloy were carried out to futher improve the mechanical strength and refine the γ’ particle, and this processing route as follows: near-isothrmal forged at deformation temperature of 1130°C and strain rate of 0.1 s-1, followed by subsequence oil quenching, and then held at 760°C for 16 h. OM, SEM and TEM were used to investigate the microstructure of TMTed alloy. It was found that the advanced mechanical strength originated form the dispersion strengthening of fine γ’ particle and stain hardening reserved from deformation after TMT. But TMT had no obvious effect on improving the chemical segregation of original materials. Fracture analysis of TMTed alloy shown that cracks origined from Ti and Nb chemical segregation and presented rose-pattern and ladder-pattern at room temperature and 750°C temperature.

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Edited by:

Zhengyi Jiang and Chunliang Zhang

Pages:

255-259

DOI:

10.4028/www.scientific.net/AMR.97-101.255

Citation:

Y. Q. Ning et al., "Investigation on Thermomechanical Treatment of PM FGH4096 Superalloy", Advanced Materials Research, Vols. 97-101, pp. 255-259, 2010

Online since:

March 2010

Export:

Price:

$35.00

[1] A.A. Barani, D. Ponge, D. Raabe: Mater. Sci. & Eng. A Vol. 426 (2006), p.194.

[2] M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, M. Murakami: Mater. Sci. & Eng. A Vol. 497 (2008), p.353.

[3] B. Kockar, I. Karaman, A. Kulkarni, Y. Chumlyakov, I.V. Kireeva: J. Nuc. Mater. Vol. 361 (2007), p.298.

[4] J. Frenzel, J. Pfetzing, K. Neuking, G. Eggeler: Mater. Sci. & Eng. A Vol. 481-482 (2008), p.635.

[5] R. C. Reed: The superalloys Fundamentals and Applications(Cambridge university press, 2006).

[6] G. B. Viswanathan, P. M. Sarosi, M. F. Henry, D. D. Whitis,W. W. Milligan and M. J. Mills: Acta MaterVol. 53 (2005), p.3041.

[7] G. B. Viswanathan, P. M. Sarosi, D. H. Whitis, M. J. Mills: Mater. Sci. Eng. A Vol. 400-401 (2005), P. 489.

[8] Y. Q. Ning, Z. K. Yao, H. Z. Guo, T. W. Yue, Y. L. Guo, H. Li, in: Advanced Technology of Plasticity 2008, edited by D. Y. Yang, Y. H. Kim and C. H. Park, Korean Society for Technology of Plasticity Publisher (2008), p.1354.

[9] Y. Q. Ning, Z. K. Yao, H. Z. Guo, H. Li, T. W. Yue. International Conference on Technology of Plasticity, Gyeongju, Korea, September 7-11 (2008) 936-939.

[10] G. F. Tian, C. C. Jia, Y. Wen and B. F. Hu: J. Uni. Sci. & Tech. Beijing Vol. 15 (2008), p.729.

[11] J. T. Liu, G. Q. Liu, B. F. Hu, Y. P. Song, Z. R. Qin and Y. W. Zhang: J. Uni. Sci. & Tech. Beijing Vol. 13 (2006), p.319.

[12] Y. Q. Ning, Z. K. Yao, H. Li, H. Z. Guo, Y. Tao and Y. W. Zhang: Mater. Sci. Eng. A (2009), doi: 10. 1016/j. msea. 2009. 09. 011.

[13] Y.Q. Ning, Z.K. Yao, H.Z. Guo, Y. Tao, Y.W. Zhang: Key Eng. Mater. Vol. 407-708 (2009), p.694.

[14] Z.W. Su, Z.K. Yao, H.Z. Guo, J.C. Liu, J.Y. Liu, J. Cui, G.Q. Liu, M. Jiang and Z.Y. Ying: Acta Metal. Sin Vol. 32 (1996), p.377.

[15] Z.K. Yao, H.Z. Guo, J.C. Liu, Z.W. Su, M. Jiang, Z.Y. Ying, J.Y. Liu and J. Cui: Chinese. J. Nonfer. Met. Vol. 10 (2000), p.378.

[16] N. Srinivasan, Y. V. R. K. Prasad: Metall. Trans. A Vol. 25 (1994), p.2275.

In order to see related information, you need to Login.