Titanium K-Edge XAS Study on Local Structure of Pb1-xCaxTiO3 Ferroelectric Ceramics


Article Preview

In order to characterize the local structure of Pb1-xCaxTiO3 (PCT) samples, Ti K-edge XANES measurements were performed and showed that Ca incorporation to PbTiO3 structure leads to a decreasing of local distortion of Ti atoms in relation to oxygen atoms at the TiO6 octahedra. Moreover, according to EXAFS measurements, the local structure around Ti atoms exhibits tetragonal symmetry with P4mm space group for samples with x 0.475, whereas orthorhombic symmetry with Pbnm space group was observed for x equals to 0.50 and 0.55.



Main Theme:

Edited by:

Daniel Z. de Florio, Eliana N. S. Muccillo, Fábio C. Fonseca and R. Muccillo




A. Mesquita et al., "Titanium K-Edge XAS Study on Local Structure of Pb1-xCaxTiO3 Ferroelectric Ceramics", Advanced Materials Research, Vol. 975, pp. 29-35, 2014

Online since:

July 2014




[1] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, London and New York: Academic Press, (1971).

[2] A. Chandra, Comment on Pb1-xCaxTiO3 solid solution (x=0. 0, 0. 25, 0. 50, and 0. 75): A theoretical and experimental approach, Phys. Rev. B 77, 1 (2008) 017101.

[3] A. Chandra, D. Pandey, Evolution of crystallographic phases in the system (Pb1−xCax)TiO3: A Rietveld study, J. Mater. Res. 18, 2 (2003) 407-414.

DOI: https://doi.org/10.1557/jmr.2003.0052

[4] S.R. de Lazaro, P.R. de Lucena, J.R. Sambrano, P.S. Pizani, A. Beltran, J.A. Varela, E. Longo, Pb1-xCaxTiO3 solid solution (x=0. 0, 0. 25, 0. 50, and 0. 75): A theoretical and experimental approach, Phys. Rev. B 75, 14 (2007) 017101.

DOI: https://doi.org/10.1103/physrevb.75.144111

[5] E. Longo, C. Paris, P.S. Pizani, S.R. de Lazaro, P.R. de Lucena, J.A. Varela, Reply to Comment on 'Pb(1-x)Ca(x)TiO(3) solid solution (x=0. 0, 0. 25, 0. 50, and 0. 75): A theoretical and experimental approach', Phys. Rev. B 81, 5 (2010) 056101.

DOI: https://doi.org/10.1103/physrevb.81.056101

[6] A. Singh, K. Sreenivas, R.S. Katiyar, V. Gupta, Evidence of pseudocubic structure in sol-gel derived Pb1-xCaxTiO3 (x=0. 35-0. 48) ceramic by dielectric and Raman spectroscopy, J. Appl. Phys. 102, 7 (2007) 074110.

DOI: https://doi.org/10.1063/1.2785843

[7] B. Jimenez, R. Jimenez, Elastic softening due to polar clusters in Pb1-xCaxTiO3 ferroelectric ceramics above the phase-transition temperature, Phys. Rev. B 66, 1 (2002) 014104.

DOI: https://doi.org/10.1103/physrevb.66.014104

[8] R. Ranjan, N. Singh, D. Pandey, V. Siruguri, P.S.R. Krishna, S.K. Paranjpe, A. Banerjee, Room temperature crystal structure and relaxor ferroelectric behavior of Pb0. 5Ca0. 5TiO3, Appl. Phys. Lett. 70, 24 (1997) 3221-3223.

DOI: https://doi.org/10.1063/1.119131

[9] G. Bunker, Introduction to XAFS. A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge Univ. Press, (2010).

DOI: https://doi.org/10.1017/cbo9780511809194

[10] V.A. Shuvaeva, D. Zekria, A.M. Glazer, Q. Jiang, S.M. Weber, P. Bhattacharya, P.A. Thomas, Local structure of the lead-free relaxor ferroelectric (KxNa1-x)(0. 5)Bi0. 5TiO3, Phys. Rev. B 71 (2005) 174114.

DOI: https://doi.org/10.1103/physrevb.71.174114

[11] V. R. Vedrinskii, V.L. Kraizman, A.A. Novakovich, P.V. Demekhin, S.P. Urazhdin, Pre-edge fine structure of the 3d atom K x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals, J. Phys. - Cond. Matter 10, 42 (1998).

DOI: https://doi.org/10.1088/0953-8984/10/42/021

[12] P.P. Neves, A.C. Doriguetto, V.R. Mastelaro, L.P. Lopes, Y.P. Mascarenhas, A. Michalowicz, J.A. Eiras, XAS and XRD structural characterization of lanthanum-modified PbTiO3 ceramic materials, J. Phys. Chem. B 108, 39 (2004) 14840-14849.

DOI: https://doi.org/10.1021/jp037166h

[13] N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan, J.J. Rehr, Nature of the ferroelectric phase-transition in PbTiO3, Phys. Rev. B 50, 18 (1994) 13168-13180.

DOI: https://doi.org/10.1103/physrevb.50.13168

[14] A. Michalowicz, J. Moscovici, D. Muller-Bouvet, K. Provost, MAX: Multiplatform Applications for XAFS, J. Phys.: Conf. Series 190 (2009) 012034.

DOI: https://doi.org/10.1088/1742-6596/190/1/012034

[15] A.L. Ankudinov, B. Ravel, S.D. Conradson, J.J. Rehr, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B 58 (1998) 7565.

DOI: https://doi.org/10.1103/physrevb.58.7565

[16] V.R. Mastelaro, A. Mesquita, P.P. Neves, A. Michalowicz, M. Bounif, P.S. Pizani, M.R. Joya, J.A. Eiras, Short-range structure of Pb1-xBaxZr0. 65Ti0. 35O3 ceramic compounds probed by XAS and Raman scattering techniques, J. Appl. Phys. 105, 3 (2009).

DOI: https://doi.org/10.1063/1.3073942

[17] I. Grinberg, P. Juhas, P.K. Davies, A.M. Rappe, Relationship between local structure and relaxor behavior in perovskite oxides, Phys. Rev. Lett. 99, 26 (2007) 267603.

DOI: https://doi.org/10.1103/physrevlett.99.267603

[18] I. Grinberg, A.M. Rappe, Local structure and macroscopic properties in PbMg1/3Nb2/3O3-PbTiO3 and PbZn1/3Nb2/3O3-PbTiO3 solid solutions. Phys. Rev. B 70, 22 (2004) 220101(R).

DOI: https://doi.org/10.1103/physrevb.70.220101

[19] G.A. Samara, Pressure-induced crossover from long-to short-range order in compositionally disordered soft mode ferroelectrics, Phys. Rev. Lett. 77, 2 (1996) 314-7.

DOI: https://doi.org/10.1103/physrevlett.77.314

[20] S.S. Hasnain, Rept. Int. Workshops on Standards and Criteria in XAFS, in X-ray Absorption Fine Structure: Proc. VI Int. Conf. X-ray Absorption Fine Structures, New York: Ellis Horwood, (1991).