Tailored Mechanical Properties and Residual Stresses of a-C:H:W Coatings

Abstract:

Article Preview

In this study, three different a-C:H:W coatings with predefined hardness values, ranging from 10 up to 16 GPa, were deposited by adjusting bias voltage according to a previously created regression model. For this purpose, the influence of the main process parameters of the used reactive unbalanced magnetron sputtering process on the mechanical properties of the a-C:H:W coating was investigated previously by nanoindentation. For a systematical evaluation of the single effects, parameters were varied according to a central composite design. The three coating variants of this study were investigated in terms of microstructure, mechanical properties and residual stresses. It turned out, that by the use of the regression model, a-C:H:W coatings with tailored mechanical properties can be deposited. Residual stresses were measured by means of focused ion beam milling of a double-slit geometry, which causes the internal stresses to relax, and mapping of the resultant relief strain by digital image correlation. A linear relation between the applied bias voltage and the hardness, the modulus of the coating as well as the determined relief strain was observed. Thus, residual stresses of the coatings increase disproportionately with applied bias voltage. The obtained results can be helpful for tailored coating design and further optimization of a-C:H:W coatings.

Info:

Periodical:

Main Theme:

Edited by:

M. François, G. Montay, B. Panicaud, D. Retraint and E. Rouhaud

Pages:

14-21

DOI:

10.4028/www.scientific.net/AMR.996.14

Citation:

C. Schmid et al., "Tailored Mechanical Properties and Residual Stresses of a-C:H:W Coatings", Advanced Materials Research, Vol. 996, pp. 14-21, 2014

Online since:

August 2014

Export:

* - Corresponding Author

[1] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (2002) 129–281.

[2] K. -R. Lee, K.Y. Eun, I. Kim, J. Kim, Design of W buffer layer for adhesion improvement of DLC films on tool steels, Thin Solid Films 377–378 (2000) 261-268.

DOI: 10.1016/s0040-6090(00)01429-2

[3] M. D. Bentzon, K. Mogensen, J. Bindslev Hansen, C. Barholm-Hansen, C. Træholt, P. Holiday, S. S. Eskildsen, Metallic interlayers between steel and diamond-like carbon, Surf. Coat. Technol. 68/69 (1994) 651-655.

DOI: 10.1016/0257-8972(94)90232-1

[4] C. -C. Chen, F.C. -N. Hong, Interfacial studies for improving the adhesion of diamond-like carbon films on steel Appl. Surf. Sci. 243 (2005) 296-303.

DOI: 10.1016/j.apsusc.2004.09.085

[5] Association of German Engineers (VDI), VDI guideline 2840, VDI, Düsseldorf, (2005).

[6] C. Strondl, N.M. Carvalho, J. Th.M. De Hosson, T.G. Krug, Influence of energetic ion bombardment on W-C: H coatings deposited with W and WC targets, Surf. Coat. Technol. 200 (2005) 1142-1146.

DOI: 10.1016/j.surfcoat.2005.02.182

[7] J.C. Sánchez-López, A. Fernández, Doping and alloying effects on DLC coatings, in: C. Donnet, A. Erdemir (Eds. ), Tribology of Diamond-Like Carbon Films, Springer, New York, 2008, 311-338.

DOI: 10.1007/978-0-387-49891-1_12

[8] K.I. Schiffmann, M. Fryda, G. Goerigk, R. Lauer, P. Hinze, A. Bulack, Sizes and distances of metal clusters in Au-, Pt-, W- and Fe-containing diamond-like carbon hard coatings: a comparative study by small angle X-ray scattering, wide angle X-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy, Thin Solid Films 347 (1999).

DOI: 10.1016/s0040-6090(98)01607-1

[9] C. Strondl G.J. van der Kolk, T. Hurkmans, W. Fleischer , T. Trinh, N.M. Carvalho, J. Th.M. de Hosson, Properties and characterization of multilayers of carbides and diamond-like carbon, Surf. Coat. Technol. 142-144 (2001) 707-713.

DOI: 10.1016/s0257-8972(01)01179-3

[10] Bewilogua, C.V. Cooper, C. Specht, J. Schröder, R. Wittorf ,M. Grischke, Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings, Surf. Coat. Technol. 132 (2000) 275-283.

DOI: 10.1016/s0257-8972(00)00746-5

[11] B.R. Pujada, G.C.A.M. Janssen, Density, stress, hardness and Young's modulus of W-C: H coatings, Surf. Coat. Technol. 201 (2006) 4284–4288.

DOI: 10.1016/j.surfcoat.2006.08.058

[12] C. Corbella E. Bertran, M.C. Polo, E. Pascual, J.L. Andújar, Structural effects of nanocomposite films of amorphous carbon and metal deposited by pulsed-DC reactive magnetron sputtering, Diam. Relat. Mater. 16 (2007) 1828-1834.

DOI: 10.1016/j.diamond.2007.07.012

[13] C. Corbella, G. Oncins, M.A. Gómez, M.C. Polo, E. Pascual, J. García-Céspedes, J.L. Andújar, E. Bertran, Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering, Diam. Relat. Mater. 14 (2005).

DOI: 10.1016/j.diamond.2004.10.029

[14] C. Strondl, N.M. Carvalho, J. Th.M. De Hosson, G.J. van der Kolk, Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings, Surf. Coat. Technol 162 (2003) 288-293.

DOI: 10.1016/s0257-8972(02)00497-8

[15] K.J. Kang, N. Yao, M.Y. He, A.G. Evans, A method for in situ measurement of the residual stress in thin films by using the focused ion beam, Thin Solid Films 443 (2003) 71-77.

DOI: 10.1016/s0040-6090(03)00946-5

[16] H. Hetzner, R. Zhao, S. Tremmel, S. Wartzack, Tribological adjustment of tungsten-modified hydrogenated amorphous carbon coatings by adaption of the deposition parameters, in: K. -D. Bouzakis, K. Bobzin, B. Denkena, M. Merklein (Eds. ), Proceedings of the 10th International Conference THE 'A', Coatings 2013, Shaker, Aachen, 2013, 39-49.

[17] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

[18] M. Krottenthaler, C. Schmid, J. Schaufler, K. Durst, M. Göke, A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation, Surf. Coat. Technol., 215 (2013) 247-252.

DOI: 10.1016/j.surfcoat.2012.08.095

[19] A.M. Korsunsky, M. Sebastiani, E. Bemporad, Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation, Surf. Coat. Technol. 205 (2010) 2393-2403.

DOI: 10.1016/j.surfcoat.2010.09.033

[20] M. Sebastiani C. Eberl, E. Bemporad, G.M. Pharr, Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method, Mat. Sci. Eng. A 528 (2011) 7901-7908.

DOI: 10.1016/j.msea.2011.07.001

[21] F. Ahmed M. Krottenthaler, C. Schmid, K. Durst, Assessment of stress relaxation experiments on diamond coatings analyzed by digital image correlation and micro-Raman spectroscopy, Surf. Coat. Technol. 237 (2013) 255–260.

DOI: 10.1016/j.surfcoat.2013.07.025

[22] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear 246 (2000) 1–11.

DOI: 10.1016/s0043-1648(00)00488-9

[23] M. Sebastiani, M. Piccoli, E. Bemporad, Effect of micro-droplets on the local residual stress field in CAE-PVD thin coatings, Surf. Coat. Technol. 215 (2013) 407–412.

DOI: 10.1016/j.surfcoat.2012.08.094

[24] J. Schaufler, C. Schmid, K. Durst, M. Göken, Determination of the interfacial strength and fracture toughness of a-C: H coatings by in-situ microcantilever bending, Thin Solid Films 522 (2012) 480–484.

DOI: 10.1016/j.tsf.2012.08.031

[25] J. Schaufler, K. Durst, T. Haas, R. Nolte, H.W. Höppel, M. Göken, The influence of hydrogenated amorphous carbon coatings (a-C: H) on the fatigue life of coated steel specimens, Int. J. Fatigue 37 (2012) 1–7.

DOI: 10.1016/j.ijfatigue.2011.09.008

[26] U. Depner-Miller, J. Ellermeier , H. Scheerer, M. Oechsner, K. Bobzin, N. Bagcivan, T. Brögelmann, R. Weiss, K. Durst, C. Schmid, Influence of application technology on the erosion resistance of DLC coatings, Surf. Coat. Technol. 237 (2013).

DOI: 10.1016/j.surfcoat.2013.07.043

In order to see related information, you need to Login.