Residual Stress State in Oxide Dispersive Steel due to Irradiation by Swift Heavy Ions


Article Preview

Oxide dispersive steel is a promising material for next nuclear reactors generation. Performance of this material in nuclear reactor can be modeled by means of irradiation by swift Bi ions, which are typical nuclear fusion products. Radiation damage results in microstructure alternation leading to formation of micro and macro stresses that influence the material performance. The residual stress state of ferrite matrix of the steel is investigated by XRD methodic and dependence on the irradiation dose is analyzed.



Main Theme:

Edited by:

M. François, G. Montay, B. Panicaud, D. Retraint and E. Rouhaud






V. Uglov et al., "Residual Stress State in Oxide Dispersive Steel due to Irradiation by Swift Heavy Ions", Advanced Materials Research, Vol. 996, pp. 22-26, 2014

Online since:

August 2014


* - Corresponding Author

[1] S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9Cr-ODS Martensitic Steel Claddings for Fuel Pins by means of Ferrite to Austenite Phase Transformation, J. Nucl. Sci. Technol. 39 (2002) 778–788.

DOI: 10.3327/jnst.39.778

[2] A. Alamo, V. Lambard, X. Averty, M. -H. Mathon, Assessment of ODS-14%Cr ferritic alloy for high temperature applications, J. Nucl. Mater. 329–333 (2004) 333–337.

DOI: 10.1016/j.jnucmat.2004.05.004

[3] Y. de Carlan, J. -L. Bechade, P. Dubuisson, J. -L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. leblond, M. -H. Mathon, CEA developments of new ferritic ODS alloys for nuclear applications, J. Nucl. Mater. 386–388 (2009).

DOI: 10.1016/j.jnucmat.2008.12.156

[4] K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater. 383 (2008) 189-195.

DOI: 10.1016/j.jnucmat.2008.08.044

[5] M.J. Alinger, G.R. Odette and D.T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys, Acta Mater. 57 (2009) 392-406.

DOI: 10.1016/j.actamat.2008.09.025

[6] K. Verhiest, A. Almazouzi, N. De. Wispelaere, R. Petrov and S. Claessens, Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications, J. Nucl. Mater. 385 (2009) 308-311.

DOI: 10.1016/j.jnucmat.2008.12.006

[7] M.K. Miller, K.F. Russel and D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater. 351 (2006) 261-268.

DOI: 10.1016/j.jnucmat.2006.02.004

[8] M. Ratti, D. Leuvrey, M.H. Mathon and Y. De Carlan, Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials, J. Nucl. Mater. 386-388 (2009) 510-543.

DOI: 10.1016/j.jnucmat.2008.12.171

[9] L. Zhang, S. Ukai, T. Hoshimo, S. Hayashi and X. Qu, Y2O3 evolution and dispersion refinement in Co-base ODS alloys, Acta Mater. 57 (2009) 3671-3682.

DOI: 10.1016/j.actamat.2009.04.033

[10] H. Kishimoto, R. Kasada, O. Hashitomi and A. Kimura, Stability of Y–Ti complex oxides in Fe–16Cr–0. 1Ti ODS ferritic steel before and after heavy-ion irradiation, J. Nucl. Mater. 386-388 (2009) 533-536.

DOI: 10.1016/j.jnucmat.2008.12.169

[11] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeljer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Appl. Cryst. 38 (2005) 1-29.

DOI: 10.1107/s0021889804029516

[12] H.A. Jejn, Multicomponent and multiphase hard coatings for tribological applications, Surf. Coat. Technol. 131 (2000) 433-440.

In order to see related information, you need to Login.