Relationship between Dislocation Density and Macro Strain of High-Heat-Load Materials


Article Preview

A relationship between dislocation density and macro strain was investigated for GLIDCOP, dispersion-strengthened copper with ultra-fine particles of aluminum oxide. The dislocation density was estimated by applying the Warren-Averbach method to a diffraction profile measured using synchrotron radiation.



Main Theme:

Edited by:

M. François, G. Montay, B. Panicaud, D. Retraint and E. Rouhaud






M. Sano et al., "Relationship between Dislocation Density and Macro Strain of High-Heat-Load Materials", Advanced Materials Research, Vol. 996, pp. 33-38, 2014

Online since:

August 2014


* - Corresponding Author

[1] T. Mochizuki, Y. Sakurai, D. Shu, T.M. Kuzay, H. Kitamura, Design of compact absorbers for high-heat-load X-ray undulator beamlines at SPring-8, J. Synchrotron Rad. 5 (1998) 1199-1201.

DOI: 10.1107/s0909049598000387

[2] M. Oura, Y. Sakurai, H. Kitamura, Front-end XY-slits assembly for the SPring-8 undulator beamlines, J. Synchrotron Rad. 5 (1998) 606-608.

DOI: 10.1107/s090904959701474x

[3] S. Takahashi, M. Sano, T. Mochizuki, A. Watanabe, H. Kitamura, Fatigue life prediction for high-heat-load components made of GlidCop by elastic-plastic analysis, J. Synchrotron Rad. 15 (2008) 144-150.

DOI: 10.1107/s090904950706565x

[4] M. Sano, S. Takahashi, A. Watanabe, H. Kitamura, K. Kiriyama, T. Shobu, Internal residual strain of GlidCop for materials of the high-heat-load components, Materials Science Forum, 652 (2010) 222-226.

DOI: 10.4028/

[5] M. Sano, S. Takahashi, A. Watanabe, H. Kitamura, S. Shiro, T. Shobu, Plastic strain of GlidCop for materials of high heat load components, Materials Science Forum, 772 (2014) 123-127.

DOI: 10.4028/

[6] T. Ungar, A. Borbely, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett. 69 (1996) 3173-3175.

DOI: 10.1063/1.117951

[7] B.E. Warren, X-ray studies of deformed metals, Prog. Met. Phys. 8 (1959) 147-202.

[8] M. Wilkens, Fundamental Aspects of Dislocation Theory, Nat. Bur. Stand. Spec. Publ., USA, No. 317, Vol. II, 1970, 1195-1221.

[9] Y. Noda, Current Status of Crystal Structure Analysis BL02B1 Experimental Station, SPring-8 INFORMATION, Volume 02, No. 5 (1997) 17-23.

[10] T. Ungar, I. Dragomir, A. Revesz, A. Borbely, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, J. Appl. Cryst. 32 (1999) 992-1002.

DOI: 10.1107/s0021889899009334

In order to see related information, you need to Login.