X-Ray Line Profile Study on Shot/Laser-Peened Stainless Steel


Article Preview

Microstructure and residual stress in AISI316 stainless steels processed via shot peening (SP) and laser peening (LP) were evaluated using X-ray line profile analysis and residual stress measurements. Although both specimens exhibited similar compressive residual stress profiles in the depth direction, the dislocation density in the SP specimen was greater than that in the LP specimen, while the crystallite size in the SP specimen was less than that of the LP specimen. Thus, the variation in the microstructural features in the samples subjected to the two processes differed.



Main Theme:

Edited by:

M. François, G. Montay, B. Panicaud, D. Retraint and E. Rouhaud




M. Kumagai et al., "X-Ray Line Profile Study on Shot/Laser-Peened Stainless Steel", Advanced Materials Research, Vol. 996, pp. 39-44, 2014

Online since:

August 2014


* - Corresponding Author

[1] P. Peyre, R. Fabbro, P. Merrien, H. Lieurade, Mater. Sci. Eng. A 210 (1996) 102.

[2] R. Tenaglia, D. Lahrman, Amptiac Q. 7 (2003) 3.

[3] I. Nikitin, I. Altenberger, Mater. Sci. Eng. A 465 (2007) 176.

[4] T. Sakai, K. Akita, S. Ohya, Y. Sano, T. Saito, J. Soc. Mater. Sci. Japan 57 (2008) 648.

[5] K. Masaki, Y. Ochi, T. Matsumura, Y. Sano, Mater. Sci. Eng. A 468-470 (2007) 171.

[6] A. Ebans, S. Kim, J. Shackleton, G. Bruno, M. Preuss, P. Withers, Int. J. Fatigue 27(2005) 1530.

[7] A. King, A. D. Evans, M. Preuss, P. J. Withers, C. Woodward, J. Neutron Res. 12 (2004) 207.

[8] A. King, A. Steuwer, C. Woodward, P. J. Withers, Mater. Sci. Eng. A 435-436 (2006) 12.

[9] S. Kalainathan, S. Sathyajith, S. Swaroop, Opt. Lasers Eng. 50 (2012) 1740.

[10] J. Z. Lu, K. Y. Luo, D. K. Yang, X. N. Cheng, J. L. Hu, F. Z. Dai, H. Qi, L. Zhang, J. S. Zhong, Q. W. Wang, Y. K. Zhang, Corros. Sci. 60 (2012) 145.

[11] Y. Sano, N. Mukai, K. Okazaki, M. Obata, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 121 (1997) 432.

[12] M. Kumagai, K. Akita, Y. Itano, M. Imafuku, S. Ohya, J. Nucl. Mater. 443 (2013) 107.

[13] B. E. Warren, B. L. Averbach, J. Appl. Phys. 23 (1952) 497.

[14] G. K. Williamson, W. H. Hall, Acta Metall. 1 (1953) 22.

[15] A. Revesz, T. Ungár, A. Borbély, J. Lendvai, Nanostructured Mater. 7 (1996) 779.

[16] T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) 3173.

[17] T. Ungár, S. Ott, P. Sanders, A. Borbély, J. Weertman, Acta Mater. 46 (1998) 3693.

[18] H. M. Ledbetter, Br. J. Non-Destructive Test. 23 (1981) 286.

[19] A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, T. Ungár, J. Appl. Crystallogr. 36 (2003) 160.

[20] J. I. Langford, J. Appl. Crystallogr. 11 (1978) 10.