Local Stress Analysis in an SMA during Stress-Induced Martensitic Transformation by Kossel Microdiffraction


Article Preview

The Kossel microdiffraction in a scanning electron microscope allows for local stress determination. This technique has been applied to monitor stress evolution within grains of austenite in the course of martensitic transformation in a shape memory alloy. Kossel diffraction patterns were recorded during in situ tensile straining of Cu-Al-Be alloy. These innovative measurements show large stress heterogeneities between grains, with the stress ratio exceeding two. As martensite variants are stress-induced, shear stress components appear in individual grains of austenite.



Main Theme:

Edited by:

M. François, G. Montay, B. Panicaud, D. Retraint and E. Rouhaud




D. Bouscaud et al., "Local Stress Analysis in an SMA during Stress-Induced Martensitic Transformation by Kossel Microdiffraction", Advanced Materials Research, Vol. 996, pp. 45-51, 2014

Online since:

August 2014


* - Corresponding Author

[1] H. Horikawa, S. Ichinose, K. Morii, S. Miyazaki, K. Otsuka, Orientation dependence of β1 → β1' stress-induced martensitic transformation in a Cu-AI-Ni alloy, Metall. Trans. A 19 (1988) 915-923.

DOI: https://doi.org/10.1007/bf02628376

[2] K. Bhattacharya, R.V. Kohn, Symmetry, texture and the recoverable strain of shape-memory polycrystals, Acta Mater. 44 (1996) 529-542.

DOI: https://doi.org/10.1016/1359-6454(95)00198-0

[3] E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, J. Phys. IV 6 (1996) 277-292.

DOI: https://doi.org/10.1051/jp4:1996127

[4] S. Berveiller, B. Malard, J. Wright, E. Patoor, G. Geandier, In situ synchrotron analysis of lattice rotations in individual grains during stress-induced martensitic transformations in a polycrystalline CuAlBe shape memory alloy, Acta Mater. 59 (2011).

DOI: https://doi.org/10.1016/j.actamat.2011.02.037

[5] B. Kaouache, K. Inal, S. Berveiller, A. Eberhardt, E. Patoor, Martensitic transformation criteria in Cu-Al-Be shape memory alloy - In situ analysis, Mater. Sci. Eng. A 438-440 (2006) 773-778.

DOI: https://doi.org/10.1016/j.msea.2006.05.085

[6] P. Sittner, P. Lukas, D. Neov, M.R. Daymond, V. Novak, G.M. Swallowe, Stress-induced martensitic transformation in Cu-Al-Zn-Mn polycrystal investigated by two in-situ neutron diffraction techniques, Mat. Sci. Eng. A324 (2002) 225-234.

DOI: https://doi.org/10.1016/s0921-5093(01)01316-8

[7] B. Cunningham, K.H. G Ashbee, An in-situ SEM Kossel X-ray diffraction study of pseudoelasticity, Acta Metall. Mater. 38 (1990) 2561-2565.

DOI: https://doi.org/10.1016/0956-7151(90)90267-k

[8] A. Morawiec, R. Pesci, J.S. Lecomte, Semiautomatic determination of orientations and elastic strain from Kossel microdiffraction, Ceram. Trans. 201 (2008) 163–169.

DOI: https://doi.org/10.1002/9780470444214.ch17

[9] A. Morawiec, An algorithm for refinement of lattice parameters using CBED patterns, Ultramicroscopy 107 (2007) 390–395.

DOI: https://doi.org/10.1016/j.ultramic.2006.10.003

[10] S. Belkahla, Elaboration et caractérisation de nouveaux alliages à mémoire de forme basse température type Cu-Al-Be, PhD Thesis, INSA Lyon, (1990).

[11] B. Malard, P. Sittner, S. Berveiller, E. Patoor, Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods, C. R. Phys. 13 (2012) 280-292.

DOI: https://doi.org/10.1016/j.crhy.2011.12.003