Advanced Polyester Textiles Adaptive to Ambient Conditions


Article Preview

The combination of polyelectrolyte microgel technology with conventional functionalisation methods to activate the surface of polyester textiles is an innovative approach towards textiles adaptive to their environment. Biopolymer microgel complexes consisting of soft synthetic pH/thermo-responsive microparticles and natural polysaccharide macromolecules in various combinations serve as a novel textile surface functionalising system. Microgel incorporation into polyester surface layers can be achieved with non-demanding techniques such as UV irradiation. The adaptivity of the functionalised textiles to ambient conditions of varying pH, temperature and relative humidity is expressed by changes in their physicochemical and water management properties. These changes occur within a physiological pH/temperature range of the human body (pH 4-8, 20-40°C), owing to the corresponding stimuli-responsive properties of the functionalising microgels, giving scope for applications in the fields of biomedicine and protective clothing. Indicatively, such changes involve a shift in polyester surface charge from positive to negative values at a pH range 5.0-6.6, following the trend of the incorporated polyelectrolytes. Below 36°C, functionalised textiles exhibit improved water wettability, whilst above 36°C they have lower moisture regain and higher water vapour transmission rates than the non-functionalised textiles. The manifestation of the imparted adaptivity to ambient conditions is also a function of the intrinsic characteristics (e.g. porosity, surface roughness) of the textile, allowing for suitable combinations of substrates and functionalizing systems with tailored properties.



Edited by:

Pietro Vincenzini




P. Glampedaki, "Advanced Polyester Textiles Adaptive to Ambient Conditions", Advances in Science and Technology, Vol. 100, pp. 17-26, 2017

Online since:

October 2016




* - Corresponding Author

[1] M. Shahinpoor, H-J Schneider H-J (Eds. ), Intelligent Materials, Royal Society of Chemistry, Cambridge (2008).

[2] MW. Urban (Ed. ), Handbook of stimuli-responsive materials, John Wiley and Sons (2011).

[3] HG. Woo, H. Li (Eds. ), Advanced functional materials, Springer (2011).

[4] ZL Wang, ZC Kang (Eds. ), Functional and smart materials. Structural evolution and structure analysis (1st Ed. ), Plenum Press, New York (1998).

[5] MJ. Campolongo, JS. Kahn , WL. Cheng, DY. Yang, T. Gupton-Campolongo, D. Luo, Journal of Materials Chemistry 21, (2011) p.6113.

[6] CMA Ashruf, Sensor Review 22, (2002) p.322.

[7] W. Den Boer, Active matrix liquid crystal displays [fundamentals and applications], Elsevier (2005).

[8] B. Osterby, RD. McKelvey, L. Hill, Journal of Chemical Education 68, (1991) p.424.

[9] MW. Chang, E. Stride, M. Edirisinghe, Journal of the Royal Society Interface 8, (2011) p.451.

[10] C. Radhakumary, M. Antonty, K. Sreenivasan, Carbohydrate Polymers 83, (2011) p.705.

[11] F. Carpi, D. De Rossi, IEEE Transactions on Information Technology in Biomedicine 9, (2005) p.295.

[12] M. Engin, A. Demirel, EZ. Engin, M. Fedakar, Measurement 37, (2005) p.173.

[13] A. Lymberis, S. Olsson, Telemedicine Journal and E-health 9, (2003) p.379.

[14] L. Van Langenhove, C. Hertleer, M. Catrysse, R. Puers, H. Van Egmond, D. Matthijs, Smart Textiles, in Wearable eHealth Systems for Personalised Health Management, Lymberis A, de Rossi D (Eds. ), IOS Press, pp.344-352 (2004).

[15] K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, G. Tröster, Advanced Materials 22, (2010) p.5178.


[16] S. Park, S. Jayaraman, MRS Bulletin 28, (2003) p.585.

[17] SY. Kim, A. Zille, M. Murkovic, G. Guebitz, A. Cavaco-Paulo, Enzyme and Microbial Technology 40, (2007) p.1782.


[18] YL. Lam, CW. Kan, CWM. Yuen, Journal of Applied Polymer Science 121, (2011) p.267.

[19] MC. Chuang, JR. Windmiller, P. Santhosh, G. Valdes Ramirez, M. Galik, TY. Chou, J. Wang, Electroanalysis 22, (2010) p.2511.

[20] SS. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, JM. Mabry, GH. McKinley, RE. Cohen, Langmuir 25, 13625 (2009).

[21] MA. Cohen Stuart, WTS. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, GB. Sukhorukov, I. Szleifer, VV. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nature Materials 9, (2010) p.101.


[22] D. De Rossi, F. Carpi, EP. Scilingo, Advances in Colloid and Interface Science 116, (2005) p.165.

[23] J. Nji, G. Li, Smart Materials and Structures 19, 035007 (2010).

[24] BS. Shim, W. Chen, C. Doty, C. Xu, NA. Kotov, Nano Letters 8, (2008) p.4151.

[25] BR. Saunders, B. Vincent, Advances in Colloid and Interface Science 80, (1999) p.1.

[26] M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama (Eds. ), Nanoparticle Technology Handbook, pp.20-23, Elsevier, Amsterdam (2007).

[27] JW. Lee, SY. Kim, SS. Kim, YM. Lee, KH. Lee, SJ. Kim, Journal of Applied Polymer Science 73, (1999) p.113.

[28] Pradip, C. Maltesh, P. Somasundaran, RA. Kulkarni, S. Gundiah, Langmuir 7, (1991) p.2108.

[29] H. Bahaj, R. Benaddi, M. Bakass, C. Bayane, Journal of Applied Polymer Science 115, (2010) p.2479.


[30] L. Brannon-Peppas, RS. Harland, Superabsorbent Polymer Technology, Elsevier, Amsterdam (1990).

[31] P. Glampedaki, G. Petzold, V. Dutschk, R. Miller, M.M.C.G. Warmoeskerken, Reactive and Functional Polymers 72(7), (2012) 458–468.


[32] G. Petzold, C. Goltzsche, M. Mende, S. Schwarz, W. Jaeger, J. Appl. Polym. Sci. 114 (2009) 696–704.

[33] T. Detloff, T. Sobisch, D. Lerche, Powder Technol. 174 (2007) 50–55.

[34] P. Glampedaki, Polyelectrolyte microgels, in: Advanced microgelfunctionalized polyester textiles adaptive to ambient conditions, University of Twente, Enschede, 2011, p.11–49.

[35] D. Stawski, C. Bellmann, Colloids Surf A 345, (2009) p.191.

[36] A. Calvimontes, V. Dutschk, M. Stamm, Text Res J 80 (2010), p.1004.

[37] MMB. Hasan, A. Calvimontes, A. Synytska, V. Dutschk, Text Res J 78, (2008) p.996.

[38] P. Glampedaki, A. Calvimontes, V. Dutschk, M.M.C.G. Warmoeskerken, Journal of Materials Science 47(5), (2012) 2078–(2087).

[39] P. Glampedaki, J. Kraegel, G. Petzold, V. Dutschk, R. Miller, M.M.C.G. Warmoeskerken, Colloids and Surfaces A: Physicochemical and Engineering Aspects 413, (2012) 334-341.


[40] LA. Schneider, A. Korber, S. Grabbe, J. Dissemond, Arch Dermatol Res 298, (2007) p.413.