Exploring Process Technologies to Fabricate Fibrous Scaffolds and Bio-Textiles for Biomedical Applications


Article Preview

In order to mimic natural tissues, a successful strategy is to design bio-inspired materials including controlled morphological and biochemical cues as nature guidelines suggested. In this context, old and new process technologies, case by case, have to be adapted to develop innovative templates with the finest control of structural/functional properties able to correctly interact with biological tissues. Since organic and inorganic materials from synthetic or natural source do not singularly satisfy all the requirements, the discovery of new process solutions able to combine two or more materials into multicomponent systems (i.e., blends, composites, hybrids) may represent an interesting alternative for scaffold design. In order to simplify process conditions, without limiting the complexity of final device, current trends mainly address to bottom up approaches based on fibres used as micro-tassels, variously combined as a function of the desired properties – biochemical, mechanical or biological ones, to form the final device.Here, two different approaches based on the use of polymeric fibres have been proposed. Continuous microfibres processed by capillary extrusion can be integrated as reinforcement agent of porous biodegradable matrices to develop composite scaffolds with multiscale degradation properties suitable for hard tissue regeneration. Alternatively, micro-or submicro-fibres made of synthetic and/or natural polymers can be randomly assembled or patterned to form uniaxially oriented or textured platforms, thanks to the high customization of electrofluidodynamic techniques (i.e., electrospinning). Both approaches offer a large variety of micro and nanostructured platforms - with micro/nanoscale architecture and peculiar chemical composition - suitable as scaffolds or biotextiles for tissue regeneration or other biomedical uses.



Edited by:

Pietro Vincenzini




V. Guarino and L. Ambrosio, "Exploring Process Technologies to Fabricate Fibrous Scaffolds and Bio-Textiles for Biomedical Applications", Advances in Science and Technology, Vol. 100, pp. 31-37, 2017

Online since:

October 2016




* - Corresponding Author

[1] V. Guarino, M.G. Raucci, L. Ambrosio. Micro/nanotexturing and bioactivation strategies to design composite scaffolds and ECM-like analogues. Mcromolecular Symposia, 331-332 (1), (2013) 65-70.

DOI: https://doi.org/10.1002/masy.201300074

[2] Salerno A., Guarino V., Oliviero O., Ambrosio L. Domingo C. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Mater Sci & Eng C 63, (2016).

DOI: https://doi.org/10.1016/j.msec.2016.03.018

[3] V. Guarino, V. Cirillo, L. Ambrosio – Bicomponent electrospun scaffolds to design ECM tissue analogues – Exp Rev Med Dev 2016, 13(1): 83-102.

[4] V. Guarino, V. Cirillo, P. Taddei, M.A. Alvarez-Perez, L. Ambrosio, Tuning size scale and cristallinity of PCL electrospun membranes via solvent permittivity to address hMSC response, Macromol. Biosci. 11 (2011) 1694–1705.

DOI: https://doi.org/10.1002/mabi.201100204

[5] A. Guaccio, V. Guarino, M.A. Alvarez-Perez, V. Cirillo, P.A. Netti, L. Ambrosio, Influence of electrospun fibre mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences, Biotechnol. Bioeng. 108 (2011).

DOI: https://doi.org/10.1002/bit.23113

[6] MA. Alvarez Perez, V Guarino, V Cirillo, L Ambrosio. In vitro mineralization and bone osteogenesis in poly(ɛ-caprolactone) and gelatin nanofibres. J Biomedical Materials Research A. 100(11), (2012) 3008-19.

DOI: https://doi.org/10.1002/jbm.a.34233

[7] R. Sumanasinghe, M.W. King. The Applications of Biotextiles in Tissue Engineering. RJTA Vol. 9 No. 3 (2005).

[8] V. Guarino, F. Urciuolo, M.A. Alvarez Perez, B. Mele, P. A: Netti, L. Ambrosio. Osteogenic differentiation and mineralization in fibre reinforced tubular scaffolds: theoretical study and experimental evidences - J Royal Society Interface 9 (74), (2012).

DOI: https://doi.org/10.1098/rsif.2011.0913

[9] N. Bhardwaj, S.C. Kundu. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28, (2010), 325-47.

[10] V. Guarino, P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti, L. Ambrosio. The influence of hydroxyapatite particles on in vitro, degradation behavior of PCL based composite scaffolds. Tissue Eng A 15(11) (2009), 3655-68.

DOI: https://doi.org/10.1089/ten.tea.2008.0543

[11] V. Guarino, S. Scaglione, M. Sandri, M.A. Alvarez-Perez, A. Tampieri, R. Quarto, L. Ambrosio. MgCHA particles dispersion in porous pcl scaffolds: in vitro mineralization and in vivo bone formation. J Tissue Eng and Reg Med; 8(4), (2014), 291-303.

DOI: https://doi.org/10.1002/term.1521

[12] F Veronesi, G Giavaresi, V Guarino, MG Raucci, M Sandri, A Tampieri, L Ambrosio, M Fini. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. J Biomed Mat Sci A 2015 103(9): 1905-9.

DOI: https://doi.org/10.1002/jbm.a.35433

[13] V. Guarino, F. Veronesi, M. Marrese, G. Giavaresi, A. Ronca, M. Sandri, A. Tampieri, M. Fini, L. Ambrosio. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds. Biomed Mater. 29; 11(1), (2016).

DOI: https://doi.org/10.1088/1748-6041/11/1/015018

[14] V. Guarino, F. Causa, P. Taddei, M. Di Foggia, G. Ciapetti, D. Martini, C. Fagnano, N. Baldini, L. Ambrosio. Polylactic acid fibre reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials 29, (2008), 3662–3670.

DOI: https://doi.org/10.1016/j.biomaterials.2008.05.024

[15] V. Guarino and L. Ambrosio - Micro-structured Fibrous Composite Scaffolds as Bone ECM Analogue (short paper) published online (https: /leishman. conference-services. net/resources/266/1604/pdf/PPC2009_0155. pdf.

[16] V. Guarino and L. Ambrosio. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Bio 4(6) (2008) 1778-87.

DOI: https://doi.org/10.1016/j.actbio.2008.05.013

[17] T.D. Roy, J.L. Simon, J.L. Ricci, E.D. Rekov, V.P. Thompson, J.R. Parsons. Performance of degradable composite bone repair products techniques. J Biomed Mater Res 66A (2003) 283–91.

DOI: https://doi.org/10.1002/jbm.a.10582

[18] C.M. Agrawal CM and K.A. Athanasiou. Technique to control pH in vicinity of  of biodegrading PLA-PGA implants. J Biomed Mater Res 38B (1997) 105–14.

DOI: https://doi.org/10.1002/(sici)1097-4636(199722)38:2<105::aid-jbm4>3.0.co;2-u

[19] L. Ambrosio, V. Guarino, V. Sanginario, P. Torricelli, M. Fini, M.P. Ginebra, J.A. Planell, R. Giardino. Injectable calcium phosphate based composites for skeletal bone treatments – Biomed Mater 29; 7(2), (2012) 024113.

DOI: https://doi.org/10.1088/1748-6041/7/2/024113

[20] V. Guarino, M. Lewandowska, M. Bil, B. Polak, L. Ambrosio. Morphology and degradation properties of PCL/hyaff11-based composite scaffolds with multiscale degradation rate. Comp Sci & Tech 70 (2010) 1826–1837.

DOI: https://doi.org/10.1016/j.compscitech.2010.06.015

[21] A. Ronca, V Guarino, M G Raucci, F Salamanna, L Martini, M Fini, S Zeppetelli and L Ambrosio. Large defect tailored composite scaffolds for in vivo bone regeneration. J Biomaterials Applications 29(5), (2014), 715-27.

DOI: https://doi.org/10.1177/0885328214539823

[22] S. Petrulyte. Advanced textile materials and biopolymers in wound management. Dan Med Bull 55, (2008), 72-7.

[23] G. Soldani, P. Losi, M. Bernabei, S. Burchielli, D. Chiappino, S. Kull, et al. Long term performance of small-diameter vascular grafts made of a poly (ether)urethane-polydimethylsiloxane semi-interpenetrating polymeric network. Biomaterials 31, (2010).

DOI: https://doi.org/10.1016/j.biomaterials.2009.12.017

[24] R.G. Welsh, J.E. Shapland, L.J. Wojcik. Preclinical histologic evaluation of a proprietary polyester device for treatment of dilated cardiomyopathy. Transact Soc Biomater 29th Meeting, (2003), 701.

[25] E. Biazar M. Khorasani, N. Montazeri, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Inter J Nanomed; 5, (2010), 839-852. doi: 10. 2147/IJN. S11883.

DOI: https://doi.org/10.2147/ijn.s11883

[26] J.L. Chen, Z. Yin, W.L. Shen, X. Chen, B.C. Heng, X.H. Zou, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31, (2010), 9438e51.

[27] S. Çalamak, C. Erdoğdu, M. Özalp, and K. Ulubayram, Silk fibroin based antibacterial bionanotextiles as wound dressing materials, Materials Science and Engineering: C, 43, (2014), 11–(2014).

DOI: https://doi.org/10.1016/j.msec.2014.07.001

[28] D. Archana, B. K. Singh, J. Dutta, and P. K. Dutta. Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Inter J Biol Macromol, 73, (2015) 49–57.

DOI: https://doi.org/10.1016/j.ijbiomac.2014.10.055

[29] I. Sebe, B. Szabó, Z. K. Nagy et al., Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Inter J Pharma. 458, 1, (2013), 99–103.

DOI: https://doi.org/10.1016/j.ijpharm.2013.10.011

[30] V Guarino, V Cirillo, R Altobelli, L Ambrosio. Polymer based platforms by electric field assisted techniques for tissue engineering and cancer therapy. Exp Rev Med Dev. 12(1), (2015), 113-29.

DOI: https://doi.org/10.1586/17434440.2014.953058

[31] V. Guarino, V. Cirillo, L. Ambrosio. Bicomponent electrospun scaffolds to design ECM tissue analogues. Exp Rev Med Dev ; 13(1), (2016), 83-102.

[32] M. Simonet, N. Stingelin, J.G.F. Wismans, C.W.J. Oomens, A. Driessen-Mola, F.P.T. Baaijens. Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges. J. Mater. Chem. B, 2, (2014), 305-313.

DOI: https://doi.org/10.1039/c3tb20995d

[33] H.G. Şenel-Ayaz, A. Perets, M. Govindaraj, D. Brookstein, P. I. Lelkes. Textile-Templated Electrospun Anisotropic Scaffolds for Tissue Engineering and Regenerative Medicine. 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, (2010).

DOI: https://doi.org/10.1109/iembs.2010.5627466

[34] H. Gozde Senel Ayaz, Anat Perets, Hasan Ayaz, Kyle D. Gilroy, Muthu Govindaraj, David Brookstein, Peter I. Lelkes. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 35 (2014) 8540-52.

DOI: https://doi.org/10.1016/j.biomaterials.2014.06.029

[35] C. Asawahame, K. Sutjarittangtham, S. Eitssayeam, Y. Tragoolpua, B. Sirithunyalug, and J. Sirithunyalug, Antibacterial activity and inhibition of adherence of Streptococcus mutans by propolis electrospun fibers. AAPS PharmSciTech, 16, 1, (2015).

DOI: https://doi.org/10.1208/s12249-014-0209-5

[36] LR Pires, V Guarino, MJ Oliveira, CC Ribeiro, MA Barbosa, L Ambrosio, A P Pêgo. Loading poly(trimethylene carbonate – co – ε-caprolactone) fibers with ibuprofen towards nerve regeneration. J Tissue Eng and Reg Med. 10(3), (2016), E154-E166.

DOI: https://doi.org/10.1002/term.1792

[37] U. Dashdorj, M. K. Reyes, A. R. Unnithan, et al. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. Inter J Biol Macromol, 80, (2015), 1–7.

DOI: https://doi.org/10.1016/j.ijbiomac.2015.06.026

[38] Y. Shi, Y. Li, J. Zhang, Z. Yu, and D. Yang. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Mater Sci & Eng C: Mat Biol Appl, 51, (2015), 346–355.

DOI: https://doi.org/10.1016/j.msec.2015.03.010

[39] Y. Liu, N. Liao, F. Cui, M. Park, and H. -Y. Kim. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles. Inter J Biol Macromol, 79, (2015), 638–643.

DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.058

[40] V Guarino, R Altobelli, V Cirillo, A Cummaro, L Ambrosio. Additive electrospraying: a new route to process electrospun scaffolds for controlled molecular release. Polym. Adv. Technol. 26, (2015), 1359–1369.

DOI: https://doi.org/10.1002/pat.3588