7th Forum on New Materials - Part D

Paper Title Page

Authors: Bernhard Jakoby
Abstract: Silicon-based MEMS technology has furthered the introduction of sensors and actuators in many applications. Particularly in inertial sensing, where no contact with a medium to be sensed is required, highly reliable and cost-effective solutions have been developed. For application in fluidic environments, special demands regarding the interaction can occur. Also, silicon-based technology is not cost-effective in low-volume applications.In our recent work, we thus consider hybrid technologies and concentrate on physical sensor principles, which often provide more robustness in process control and condition monitoring than dedicated chemical sensors featuring chemical reactions with the environment by means of specific chemical interfaces. The latter are frequently prone to reliability issues, e.g. due to poisoning, drift, etc. Examples for physical parameters are thermal and electrical conductivity, permittivity, viscosity, speed of sound, and density. In this contribution, sensing concepts addressing these target parameters are reviewed.
134
Authors: Oliver Amft
Abstract: Where a decade a ago mostly visions and bulky carry-on devices existed, today several wearable computing products could be found. For example, activity trackers are already selling in convenience stores. The development does neither mean that the core innovations of the wearable computing vision are realised, nor that there will be any successful wearable device beyond those activity trackers. The product announcements and explorations, such as Google Glass, have identified key challenges that are urging further research investments. The lessons to learn from those recent developments are discussed here, leading to an approach towards multi-function materials and wearable devices. Two projects are described that implement a multi-function approach. In the SimpleSkin project, a generic fabric is developed to realise different sensor functions, controlled via software apps in a Garment OS. The same fabric material is used in smart eyeglasses to realise temple-integrated electrodes. Whereas SimpleSkin aims at skin-attached wearables, the smart eyeglasses developed here closely resemble regular glasses and thus could become publicly accepted wearable accessories. Moving towards wearable technology that is truly embedded into everyday life opens a series of new health support applications that are sketched here, based on the concept of smart eyeglasses.
141
Authors: Aurora de Acutis, Carmelo de Maria, Giovanni Vozzi
Abstract: The majority of strategies used in tissue engineering (TE) employ a scaffold, which is used to guide .the proliferation, the migration and the adhesione of cell in 3D to pruduce an engineered tissue. A new trend in scaffolds’s fabrication is represented by the hybrid Rapid Prototyping technologies. This is a new multimaterial and multiscale fabrication approach which combine the common RP technologies with other micro/nanofabrication techiques to fabricate scaffold that mimick the hetereogenty and hierarchical structure typical of the native extracellular matrix. In this new contest our work present: 1) an innovative device for the fabrication of multi material scaffolds based on an open source FDM 3D printer suitably modified to integrate a multi nozzle deposition tool 2) a design proposal for a multi material and multi scale machine to allow a full control over the modulation of the building materials and of the topography in a scaffold 3) and lastly a CAD workflow to guide the fabrication of RP patient specific scaffolds. Multifunctional hydrogel-based scaffold are fabricated as a demonstration of the validity of the proposed devices. Starting from a clinical case we print a patient-specific scaffold with the aim to recover bone defects at mandibular level as a validation of the proposed CAD process.
151
Authors: Toshiyo Tamura, Yuka Maeda, Masaki Sekine, Ming Huang
Abstract: Wearable monitor for healthcare was proposed in the late 1990s. Physiological monitoring in daily life has considerable potential for preventing and predicting diseases, without significant discomfort or inconvenience to the user. Over the past 25 years, wearable monitoring systems have been developed for health monitoring in daily life. In this presentation we will 1) review the devices used in wearable monitoring, including home use and clinical practice; 2) consider the evidence for their benefit in terms of healthcare outcomes; and 3) discuss long-term data collection and analysis using Big Data techniques. Furthermore, issues relating to the popularization of these devices are discussed, including regulation and business models. There are many promising devices available for wearable healthcare monitoring, and we propose ideas to popularize these devices.
159
Authors: Ami Ogawa, Ayanori Yorozu, Akira Mita, Masaki Takahashi, Thomas Bock
Abstract: These days, many problems are associated with the increase of people need nursing care due to the aging society. To help the problems, expanding the healthy life expectancy is important. Thus, we have been suggesting the “Monitoring System” which can monitor the resident’s daily life. This system aims to monitor changes of resident’s behaviors as unusual signs to prevent related accidents or diseases. As a part of the system, we focused on walking. As it is reported that the ability of walking is related to many disabilities, analyzing the walking patterns is effective to know the aging level. Especially for stair walking, relatively higher ability is needed compared with level walking, that is, the decline of walking ability will appear in stair walking earlier. Therefore, we focused on the stair walking in this study. In the previous researches, sensors such as markers or electrodes are mainly used to obtain the walking information. As our system is intended to be used in living space, sensors attached to a subject’s body are unacceptable. Thus we used Kinect v2 to acquire the coordinate points of human joints without restraining subjects in this study. We use depth data considering the privacy protection. Several verification experiments to evaluate accuracy of our proposed system have been conducted.
166
Authors: Rahmat A. Shoureshi, John Ross Rizzo, Todd E. Hudson
Abstract: The percentage of people over age 65 will shift from 12% to 20% nationwide while the average life expectancy for men and women of all races continues to rise, introducing a national and global concern for health related expenses. In particular, diminished stability leading to an increased risk of falling is on the forefront of medical expense projections. The World Health Organization (WHO) estimates there are 285 million suffering from visual impairment (39 million blind, 246 million low vision) worldwide. When adding the aging population with concomitant increases in life expectancy and the climbing rates of vision pathology, the numbers are even more dramatic. Blindness and low vision result in a host of social, emotional and health problems, often due to antecedent difficulties with mobility. This paper presents two smart wearable systems designed to enhance the mobility and monitoring of elderly and those with impaired vision. By using advances in sensors, actuators, and micro-electronics, these wearable systems acquire large amount of data, and with high speed data processing and pattern recognition, provide feedback signals to those wearing them. These systems are self-contained and operate with an easily accessible battery power. Details of the design and analysis of these smart wearable systems are presented.
172
Authors: Nils Krister Persson
Abstract: We develop the hypothesis that textile and nature have much in common and that in a time of biomimetics textile is a unique class of material that provides a bridge between artefacts, by definition synthetic, and biofacts - material entities found in and produced by nature, i.e. non-synthetic. Furthermore we formulate the (seemingly) contradictorily concept of Artificial Nature. Biomimetics sometimes emphasize the inspirational aspects so that science and technology get input from biology for new technological development for new artefacts. Artificial Nature instead emphasizes the other way around; adding sound, ecology based, technology to nature and in nature for enhancing ecosystem functions.Some characteristics of natural biofact materials and structures include pliability, softness, porosity, light weight, recyclability, and periodicity. Textiles are soft, foldable, of low weight, inherent porous, anisotropic as well as periodic, easily compatible with biodegradability and recyclability. Thus there are many similarities. These are discussed together with a number of cases where textiles are mimicking biofacts. We first look at synthetic see grass (Zostera marina) for remediation of one of the most important biotopes in the world where we show that textile processing techniques are able to make production efficient. Then we look at artificial leaves, i.e. photon collecting flexible patches and indicate the textile realization of such. One of the most valuable ecosystem services is the provision of clean water and maintaining a low degree of pollution in water is of outmost importance. Textile based water purification systems has been constructed and merged with fungus (Zygomycetes) we show the potential for enhancing wet land capability.
181
Authors: Zhi Wu Han, Ming Kang Yang, Wei Yin, Jun Qiu Zhang
Abstract: Sand erosion is a phenomenon that solid particles impinging to a wall cause serious mechanical damages to its surface. It's tough to be a machine in the desert: particles of dirt and sand work their way into moving parts, where they abrade helicopter propellers, airplane rotor blades, pipes and other equipments. However, the desert scorpion (Androctonus australis) live their entire lives subjected to blowing sand, yet they never appear to be eroded. In this study, the anti–erosion characteristic rules of the scorpion surfaces under aerodynamics effect of gas/solid mixed media were studied. Biomimetic linear–cutted surfaces consisting of an array of three types of grooves, square–type, V–type and U–type, were designed and investigated to quantify their erosion wear resistance properties. A smooth surface sample was fabricated for comparison. The ANSYS-Fluent simulation of biomimetic models showed that the V-type groove sample, inspired by the desert organism's surface with different morphologies, exhibited the best erosion resistance. It also indicated the anti-erosion property of biomimetic samples could be attributed to the rotating flow in the grooves that reduces the impact speed of particles. The synchronized erosion test confirmed the conclusions. Furthermore, an application exploring of bionic blades on a centrifugal fan was conducted. The blades with optimum parameters could effectively improve anti-erosion property by 29%. We envision that more opportunities for biomimetic application in improving the anti–erosion performance of parts that work under dirt and sand particle environment will be proposed.
187
Authors: Gijs J.M. Krijnen, Remco G.P. Sanders
Abstract: In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger than of their natural equivalents. Due to this disparity, and also instigated by our work on fly-halteres inspired rotation rate sensors and desert locust ear-drum mimicking membrane struc- tures, we have analysed the differences in performance between natural and man-made sensors. We conclude that two major drawbacks of main-stream micro-fabrication are the lack of easily applicable soft materials, as well as the limitations imposed by photolithography based fabrication with respect to freeform 3D shaping of structures. Currently we are targeting additive manufacturing for biomimetic sensor structures and in this contribution we report initial results of 3D printed sensor structures.
197
Authors: Yoseph Bar-Cohen, Kris Zacny, Mircea Badescu, Hyeong Jae Lee, Stewart Sherrit, Xiao Qi Bao, David Freeman, Gale L. Paulsen, Luther Beegle
Abstract: Two of the key purposes of future NASA’s solar system exploration of planetary bodies are the search for potentially preserved bio-signatures and for habitable regions. To address these objectives, a biologically inspired wireline deep rotary-percussive drill, called Auto-Gopher, has been developed. This drill employs a piezoelectric actuated percussive mechanism for generating impulsive stresses and breaking formations, and an electric motor to rotate the bit to break material and remove the cuttings. Initially, the drill was designed as percussive mechanism for sampling ice and was demonstrated in 2005 at Lake Vida, Antarctica, reaching about 2 m depth. The lessons learned suggested there is a need to augment the percussive action with bit rotation in order to maximize the penetration rate. The first generation implementation of the rotary augmentation was focused on the demonstration of this capability. In 2012, during the 3-day field test, the drill reached a 3-meter deep in gypsum. A separate mechanism was used to break and remove the cores. The average drilling power consumption was in the range of 100-150 Watts, while the rate of penetration was approximately 2.4 m/hr. Currently under development is the second-generation drill, called Auto-Gopher 2. The drill will be fully autonomous. In this paper, the capabilities that are being integrated into the Auto-Gopher-2 are described and discussed.
207

Showing 21 to 30 of 30 Paper Titles