A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces


Article Preview

For neural applications, materials able to interface with the brain without harming it while recording high-fidelity signals over long-term implants are still sought after. Glassy Carbon (GC) and Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT-PSS) have proved to be promising materials for neural interfaces as they show – compared to conventional metal electrodes - higher conductivity, better electrochemical stability, very good mechanical properties and therefore seem to be very promising for in vivo applications. We present here, for the first time, a direct comparison between GC and PEDOT-PSS microelectrodes in terms of biocompatibility, electrical and electrochemical properties as well as in vivo recording capabilities, using electrocorticography microelectrode arrays located on flexible polyimide substrate. The GC microelectrodes were fabricated using a traditional negative lithography processes followed by pyrolysis. PEDOT-PSS was selectively electrodeposited on the desired electrodes. Electrochemical performance of the two materials was evaluated through electrochemical impedance spectroscopy and cyclic voltammetry. Biocompatibility was assessed through in-vitro studies evaluating cultured cells viability. The in vivo performance of the GC and PEDOT-PSS electrodes was directly compared by simultaneously recording neuronal activity during somatosensory stimulation in Long-Evans rats. We found that both GC and PEDOT-PSS electrodes outperform metals in terms of electrochemical performance and allow to obtain excellent recordings of somatosensory evoked potentials from the rat brain surface. Furthermore, we found that both GC and PEDOT-PSS substrates are highly biocompatible, confirming that they are safe for neural interface applications.



Edited by:

Pietro Vincenzini




M. Vomero et al., "A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces", Advances in Science and Technology, Vol. 102, pp. 68-76, 2017

Online since:

October 2016




* - Corresponding Author

[1] S.F. Cogan, Neural stimulation and recording electrodes, Annual Review of Biomedical Engineering, 10 (2008) 275-309.

[2] A. Ritaccio, P. Brunner, M. C. Cervenka, N. Crone, C. Guger, E. Leuthardt, R. Oostenveld, W. Stacey, G. Schalk, Proceedings of the First International Workshop on Advances in Electrocorticography., Epilepsy Behav. 19 (2010) 204–215.

DOI: https://doi.org/10.1016/j.yebeh.2010.08.028

[3] A. Samii, A. Koerbel, S.K. Rosahl, M. Tatagiba, M. Samii, A. Bricolo, R. W. Porter, R. F. Spetzler, R. Briggs, et al. Preservation of Function in Vestibular Schwannoma, Surgery. Neurosurgery 60 (2007) 124–128.

DOI: https://doi.org/10.1227/01.neu.0000249245.10182.0d

[4] M. Dümpelmann, J. Fell, J. Wellmer, H. Urbach, C.E. Elger, 3D Source Localization Derived from Subdural Strip and Grid Electrodes: a Simulation Study, Clin. Neurophysiol. 120 (2009) 1061–1069.

DOI: https://doi.org/10.1016/j.clinph.2009.03.014

[5] N. A Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, et al., Nanomaterials for Neural Interfaces, Adv. Mater. 21, (2009) 3970–4004.

DOI: https://doi.org/10.1002/adma.200801984

[6] M. Asplund, T. Nyberg, and O. Inganas, Electroactive polymers for neural interfaces, Polymer Chemistry, 1(9) (2010) 1374-1391.

DOI: https://doi.org/10.1039/c0py00077a

[7] E. Castagnola, A. Ansaldo, L. Fadiga, D. Ricci, Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording, physica status solidi (b) 247 (2010) 2703-2707.

DOI: https://doi.org/10.1002/pssb.201000217

[8] E. Castagnola, L. Maiolo, E. Maggiolini, A. Minotti, M. Marrani, F. Maita, A. Pecora, G. N. Angotzi, A. Ansaldo, M. Boffini, L. Fadiga, G. Fortunato, D. Ricci, PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 23(3) (2015).

DOI: https://doi.org/10.1109/tnsre.2014.2342880

[9] S. Kassegne, M. Vomero, R. Gavuglio, M. Hirabayashi, E. Özyilmaz,S. Nguyen, J. Rodriguez, E. Özyilmaz, P. van Niekerk, A. Khosla, Electrical impedance, electrochemistry, mechanical stiffness, and hardness tunability in glassy carbon MEMS µECoG electrodes, Microelectronic Engineering 133 (2015).

DOI: https://doi.org/10.1016/j.mee.2014.11.013

[10] J. J. VanDersar, A. Mercanzini, P. Renaud, Integration of 2D and 3D Thin Film Glassy Carbon Electrode Arrays for Electrochemical Dopamine Sensing in Flexible Neuroelectronic Implants, Adv. Funct. Mater. 25 (2015), 78–84.

DOI: https://doi.org/10.1002/adfm.201402934

[11] Vomero, M., V. Nguyen, N. Gong, M. Hirabayashi, A. Cinopri, K. Logan, A. Moghadasi, P. Varma, P. van Niekerk, and S. Kassegne. Novel Pattern Transfer Technique for Mounting Glassy Carbon Microelectrodes on Polymeric Flexible Substrates., Journal of Micromechanics and Microengineering 26 (2016).

DOI: https://doi.org/10.1088/0960-1317/26/2/025018

[12] K. A. Ludwig, J. D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic Neural Recordings Using Silicon Microelectrode Arrays Electrochemically Deposited with a Poly(3, 4- ethylenedioxythiophene) (PEDOT) Film. J. Neural Eng. 3 (2006) 59–70.

DOI: https://doi.org/10.1088/1741-2560/3/1/007

[13] D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leleux, T. Herve, S. Sanaur, C. Bernard , G.G. Malliaras, Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings, Adv. Mater., 23 (2011) H268–H272.

DOI: https://doi.org/10.1002/adma.201102378

[14] J.P. Harris, A.E. Hess, S.J. Rowan, C. Weder, C. A Zorman, D. J Tyler, J. R Capadona, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes, Journal of Neural Engineering,. 8(4) 2011, 046010.

DOI: https://doi.org/10.1088/1741-2560/8/4/046010

[15] G. Paxinos, & G. Watson, The Rat Brain in Stereotaxic Coordinates, 6th Edition Academic Press (2007).

[16] Agrawal. G, Thakor. N. V., All, A.H., Evoked potential versus behavior to detect minor insult to the spinal cord in a rat model Journal of Clinical Neuroscience 16 (2009) 1052–1055.

DOI: https://doi.org/10.1016/j.jocn.2008.08.009

[17] A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J Neurosci Methods 134 (2004) 9-21.

DOI: https://doi.org/10.1016/j.jneumeth.2003.10.009

[18] D.T. Sawyer, A. Sobkowiak, J. L. Roberts, Electrochemistry for Chemists (Second ed. ). New York: John Wiley & Sons. (1995).

[19] A.A. Guex, N Vachicouras, A.E. Hight, M.C. Brown, D. J Lee, S.P. Lacour, Conducting polymer electrodes for auditory brainstem implants, Journal of materials chemistry B, Materials for biology and medicine, 3(25), (2015) 5021-5027.

DOI: https://doi.org/10.1039/c5tb00099h

[20] X. T. Cui, D.D. Zhou, Poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation, IEEE Trans. Neural Syst. Rehabil. Eng. 15, (2007) 502–508.

DOI: https://doi.org/10.1109/tnsre.2007.909811

[21] T. Nyberg, A. Shimada, K. Torimitsu, Ion conducting polymer microelectrodes for interfacing with neural networks, J. Neurosci. Methods 160, (2007) 16–25.

DOI: https://doi.org/10.1016/j.jneumeth.2006.08.008

Fetching data from Crossref.
This may take some time to load.