Ceramic Matrix Composite with Increased Thermal Conductivity


Article Preview

The purpose of the study was to increase the thermal conductivity of multilayered and self-sealing ceramic matrix composites via the silicon melt infiltration process. The first step of the process consisted in filling porosity using various organic xerogels by the sol-gel route. Carbon xerogels obtained by subsequent pyrolysis may reduce and homogenize the porous network within the composite. Cracking of the xerogels due to volumic shrinkage occurring during air drying may be decreased by controlling the initial parameters as concerns the gel solution and/or by operating a second impregnation/pyrolysis step. Filling of such composites by liquid silicon revealed that a specific route and particular conditions are necessary to eliminate porosity by controlling gas production species from pore surface at high temperature. This may be achieved through a directional flow and using highly viscous silicon (thanks to a localized wick), and by keeping the sides of the materials permeable to gas. This led to composite materials with a thermal conductivity which was four times as high as that of those materials densified via CVI. An increase in mechanical properties was also observed.



Edited by:







J.C. Ichard et al., "Ceramic Matrix Composite with Increased Thermal Conductivity", Advances in Science and Technology, Vol. 45, pp. 1405-1410, 2006

Online since:

October 2006




In order to see related information, you need to Login.

In order to see related information, you need to Login.