Application of Fractal Geometry to Fracture Forensics, Research and Production

Abstract:

Article Preview

The fracture surface records past events that occur during the fracture process by leaving characteristic markings. The application of fractal geometry aids in the interpretation and understanding of these events. Quantitative fractographic analysis of brittle fracture surfaces shows that these characteristic markings are self-similar and scale invariant, thus implying that fractal analysis is a reasonable approach to analyzing these surfaces. The fractal dimensional increment, D*, is directly proportional to the fracture energy, γ, during fracture for many brittle materials, i.e., γ = ½ E a0 D* where E is the elastic modulus and a0 is a structural parameter. Also, D* is equal to the crack-size-to-mirror-radius ratio. Using this information can aid in identifying toughening mechanisms in new materials, distinguishing poorly fabricated from well prepared material and identifying stress at fracture for field failures. Examples of the application of fractal analysis in research, fracture forensics and solving production problems are discussed.

Info:

Periodical:

Edited by:

P. VINCENZINI

Pages:

1646-1651

DOI:

10.4028/www.scientific.net/AST.45.1646

Citation:

J.J. Mecholsky Jr. "Application of Fractal Geometry to Fracture Forensics, Research and Production ", Advances in Science and Technology, Vol. 45, pp. 1646-1651, 2006

Online since:

October 2006

Export:

Price:

$35.00

[1] F. W. Preston: J. Soc. of Glass Tech. 10 (1926) 234-269.

[2] E. B. Shand: J. Am. Ceram. Soc., 42(10) 474-477(1959).

[3] H. Wallner: Z. Phys., 114 (1939) 368-78.

[4] Ch. De Freminville: Rev. Met, 11 (1914) 971-1056.

[5] R.W. Rice : Ceramic fracture features, Observations, Mechanisms and Uses, in Fractography of Ceramic and Metal Failures, edited by J. J. Mecholsky, Jr. and S. R. Powell, Jr., ASTM STP 827, Philadelphia PA (1984) 5-102.

DOI: 10.1520/stp37106s

[6] S. W. Freiman, J. J. Mecholsky, Jr., and P. F. Becher: Fractography: A Quantitative Measure of the Fracture Process in Ceramic Trans. 17, Am. Ceram. Soc., (1991) 55-78.

[7] J. C. Russ: Fractal Surfaces. Plenum Press, NY (1996).

[8] B.B. Mandelbrot, D.E. Passoja and J. Paullay: Nature, 308, (1984) 721ff.

[9] A. Della Bona, T. J. Hill, and J. J. Mecholsky Jr.: J. Materials Sci. 36 (2001) 2645-50.

[10] T. J. Hill, A. Della Bona, and J. J. Mecholsky, Jr.: J. Materials Science 36, (2001) 2651- 2657.

[11] J. J. Mecholsky, Jr., T. J. Mackin and D. E. Passoja: Self-similar Crack propagation in Brittle Materials, Adv. In Ceramics 22: Fractography of Ceramics and Glasses, Varner and Frechette, eds., The Am. Ceramic Soc (1988).

[12] Y. Fahmy, J. C. Russ and C. C. Koch: J. Mater. Sci. 6, (1991) 1856-1861.

[13] J.J. Mecholsky, D.E. Passoja and K.S. Feinberg-Ringel : J. Am. Ceram. Soc. 72.

[1] (1989).

[14] P.N. Randall: Plain Strain Crack Toughness Testing of High Strength Metallic Materials in ASTM STP 410, (1988) 88-126.

[15] J. J. Mecholsky, Jr. And S. W. Freiman: J. Am. Cer. Soc. 74.

[12] (1991) 3136-38.

[16] Y. Thompson, K. J. Anusavice, A. Naman and H. F. Morris: J. Dental Research, Vol 73, (1994) 1824-1832.

[17] J. Y. Thompson, K.J. Anusavice, B. Balasunramaniam, & J. J. Mecholsky, Jr., ACerS.

[78] 11 (1995) 3045-49.

[18] J. Y. Thompson, J. C. Cuneo, A. Naman, J. J. Mecholsky, and K. J. Anusavice: Relationship Between Fracture Toughness and Fractal Dimension of a Dental GlassCeramic, Trans. Acad. Dent. Mater., v. 7, 87, Abstract (1994) 8.

[19] K. T. Faber and A.G. Evans: Acta. Metallurgica vol. 31, no. 4, (1983) 577-584.

[20] D.S. Baik, K.S. No, and J.S.S. Chun: J Am Ceram Soc. 78 (1995) 1217-22.

[21] S. K. Lee, Y. C. Kim, and C. H. Kim : J. Mater. Sci ., 29 (1994) , 5321–26.

[22] P. Sajgalik, J. Dusza, and M. J. Hoffmann : J. Am. Ceram. Soc., 10, (1995) 2619 –24.

[23] R. Chaim and V. Talanker: J. Am. Ceram. Soc., 78, (1995) 166 –72.

[24] G. Pezzotti : Acta Metall. Mater., 41, (1993) 1825–39.

[25] T. J. Hill, J. J. Mecholsky Jr. and K. J. Anusavice: J. Am. Ceram. Soc., 83.

[3] 2000) 545– 52.

[26] I. Hucklenbroich, G. Stein, H. Chin, W. Trojahn, E. Streit: High nitrogen martensitic steel for critical components in aviation, Materials Science Forum v. 318-(1999) 161-166.

DOI: 10.4028/www.scientific.net/msf.318-320.161

[27] D. K Shetty and V. K. Pujari: Tribology Trans. 47 (2004) 522-526.

[28] Z. Chen, J. Cuneo, J. J. Mecholsky, Jr. and S. F. Hu: Wear 198, (1996) 197-207.

In order to see related information, you need to Login.