Synthesis of ZrW2O8 Ceramics and Composites from Aqueous Sol-Gel Precursors


Article Preview

The thermal expansion of a ceramic material in general leads to a positive thermal expansion coefficient (α). In the last decennium, several families of materials which exhibit negative thermal expansion, arising from a specific geometrical effect in their so-called open framework structures, have been discovered. Usually, this negative thermal expansion coefficient is small, anisotropic and the phenomena occur in a very small temperature interval. ZrW2O8 is an exception because of its large and isotropic negative thermal expansion coefficient (NTE) in a temperature range from 0.5K to 1050K. A cubic symmetry is found over the entire stability range with a phase transition from α-ZrW2O8 to β-ZrW2O8 near 430K. This phase transition is noticed by a change in α. The aqueous citrate-gel method is a suitable synthesis route for negative thermal expansion ceramics and will give a fine, pure and homogenous oxide mixture, well suitable for the preparation of ZrW2O8. The expansion coefficient of α–ZrW2O8 is -11 μm/m K whereas for the β- ZrW2O8 a value of -3 is obtained.



Edited by:







K. de Buysser et al., "Synthesis of ZrW2O8 Ceramics and Composites from Aqueous Sol-Gel Precursors", Advances in Science and Technology, Vol. 45, pp. 218-222, 2006

Online since:

October 2006




[1] J. S. O. Evans: J. Chem. Soc. Dalton Vol. (1999).

[2] T. A. Mary, J. S. O. Evans, T. Vogt and A. W. Sleight: Science Vol. 272 (1996), p.90.

[3] A. W. Sleight: Inorg. Chem. Vol. 37 (1998), p.2854.

[4] C. Lind, A. P. Wilkinson, Z. B. Hu, S. Short and J. D. Jorgensen: Chem. Mater. Vol. 10 (1998), p.2335.

[5] C. Closmann, A. W. Sleight and J. C. Haygarth: J. Solid State Chem. Vol. 139 (1998), p.424.

[6] L. Noailles, B. Dunn, D. Larson, J. Starkovich and H. Peng: Euro Ceramics Viii, Pts 1-3 Vol. 264-268 (2004), p.363.

[7] L. D. Noailles, H. H. Peng, J. Starkovich and B. Dunn: Chem. Mater. Vol. 16 (2004), p.1252.

[8] A. P. Wilkinson, C. Lind and S. Pattanaik: Chem. Mater. Vol. 11 (1999), p.101.

[9] C. Lind and A. P. Wilkinson: J. Sol-gel Sci. Techn. Vol. 25 (2002), p.51.

[10] M. S. Sutton and J. Talghader: J. Microelectromech. S. Vol. 13 (2004), p.688.

[11] C. Verdon and D. C. Dunand: Scripta Mater. Vol. 36 (1997), p.1075.

[12] H. Holzer and D. C. Dunand: J. Mater. Res. Vol. 14 (1999), p.780.

[13] S. Yilmaz: Compos. Sci. Technol. Vol. 62 (2002), p.1835.

[14] M. Kofteros, S. Rodriguez, V. Tandon and L. E. Murr: Scripta Mater. Vol. 45 (2001), p.369.

[15] A. Matsumoto, K. Kobayashi, T. Nishio and K. Ozaki: Fabrication and thermal expansion of Al-ZrW2O8 composites by pulse current sintering process (2003).

DOI: 10.4028/

[16] P. Lommens, C. De Meyer, E. Bruneel, K. De Buysser, I. Van Driessche and S. Hoste: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3605.

[17] K. De Buysser, P. Lommens, C. De Meyer, E. Bruneel, S. Hoste and I. Van Driessche: Ceram. Silikaty Vol. 48 (2004), p.139.

[18] C. De Meyer, I. Van Driessche and S. Hoste: Euro Ceramics Vii, Pt 1-3 Vol. 206-2 (2002), p.11.

[19] B. D. Cullity: Elements of X-ray Diffraction (Addison-Wesley, Reading, MA 1956).

[20] J. C. Chen, G. C. Huang, C. Hu and J. P. Weng: Scripta Mater. Vol. 49 (2003), p.261.

[21] A. W. Sleight: Annu. Rev. Mater. Sci. Vol. 28 (1998), p.29.

[22] G. R. Kowach: J. Cryst. Growth Vol. 212 (2000), p.167.

[23] C. De Meyer, L. Vandeperre, I. Van Driessche, E. Bruneel and S. Hoste: Crystal Eng. Vol. 5 (2002), p.469.

[24] J. S. O. Evans, T. A. Mary and A. W. Sleight: Physica B Vol. 241 (1997), p.311.

[25] J. S. O. Evans, Z. Hu, J. D. Jorgensen, D. N. Argyriou, S. Short and A. W. Sleight: Science Vol. 275 (1997), p.61.

[26] J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight: Chem. Mater. Vol. 8 (1996), p.2809.

[27] E. Niwa, S. Wakamiko, T. Ichikawa, S. R. Wang, T. Hashimoto, K. Takahashi and Y. Morito: J. Ceram. Soc. Jpn Vol. 112 (2004), p.271.

In order to see related information, you need to Login.