Development of an Efficient of Microwave Sintering Process

Abstract:

Article Preview

The drying and sintering processes require large quantities of energy. If this energy could be used more efficiently, less would be consumed. In this research, the effect of the microwave on the manufacturing process of ceramics where heat was needed was examined. We obtained the following results when oxide ceramics were dried and sintered by microwave technique: In drying process, slip cast bodies were dried rapidly by microwave drying and compared with those dried by conventional drying techniques. In sintering process, power consumption and efficiency were lower with the time-control method than with the power-control method. The power-control method gave more precise temperature control under our experimental conditions.

Info:

Periodical:

Edited by:

P. VINCENZINI

Pages:

602-609

Citation:

M. Yasuoka et al., "Development of an Efficient of Microwave Sintering Process", Advances in Science and Technology, Vol. 45, pp. 602-609, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] Y. Hotta, T. Tsugoshi, T. Nagaoka, M. Yasuoka, K. Nakamura and K. Watari, J. Am. Ceram. Soc., Vol. 86 (2003), p.755.

[2] K. S. Chou and L. J. Lee, J. Am. Ceram. Soc., Vol. 72 (1989), p.1622.

[3] L. B. Garrido and E. F. Aglietti, J. Eur. Ceram. Soc., Vol. 21(2001), p.2259.

[4] N. Omura, Y. Hotta, K. Sato, Y. Kinemuchi, S. Kume and K. Watari, J. Ceram. Soc. Japan, Vol. 113 (2005), p.495.

DOI: https://doi.org/10.2109/jcersj.113.753

[5] Y. Shiraki: Ceramic-Seizo-Process II", (Gihodo Shuppan, Japan1980) p.39 [in Japanese].

[6] W. H. Sutton, J. Am. Ceram. Soc. Bull., 68 (1989) p.376.

[7] J. D. Katz, Annual Review of Materials, 22 (1992) p.153.

[8] C. Saltiel, Z. Fathi and W. H. Sutton, Mechanical Engineering, 117 (1995) p.102.

[9] D. E. Clark and W. H. Sutton, Annual Review of Materials, 26 (1996) p.299.

[10] K. G. Ayappa, Reviews in chemical engineering, 13 (1997) p.1.

[11] T. Shirai, M. Yasuoka, Y. Hotta and K. Watari, J. Ceram. Soc. Jap. 114 (2006) p.217.

[12] W. C. Lee, K. S. Liu, M. W. Wu and I. N. Lin, Ferroelectrics, 231 (1999) p.825.

[13] A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carmel, J. Rodgers, B. Levush, Y. V. Bykov, A. G. Eremeev, V. V. Holoptset, V. E. Semenov, D. Dadon, P. L. Martin and M. Rosen, J. Am. Ceram. Soc., 81 (1988) p.1493.

DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02508.x

[14] L. M. Levinson and H. R. Philipp, J. Am. Ceram. Soc. Bull., 65 (1986) p.639.

[15] T. K. Gupta, J. Am. Ceram. Soc., 73 (1990) p.1817.

[16] I. Lin, W. Lee, K. Liu, H. Cheng and M. Wu, J. Eur. Ceram. Soc., 21 (2001) p. (2085).

[17] J. H. Booske, R. F. Cooper and S. A. Freeman, Mater. Res. Innov. 1 (1997) p.77.

[18] J. P. Cheng, D. Agrawal, Y. J. Zhang and R. Roy, Mater. Lett. 56 (2002) p.587.

[19] K. H. Brosnan, G. L. Messing and D. K. Agrawal, J. Am. Ceram. Soc. 86 (2003) p.1307.

[20] M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai and M. Sato, J. Eur. Ceram. Soc. 24 (2004) p.387.

[21] H. Y. Chang, K. S. Liu and I. N. Lin, J. Appl. Phys. 78 (1995) p.423.

[22] Y. Ma, E. Vileno, S. L. Suib and P. K. Dutta, Chem. Mater. 9 (1997) p.3023.

[23] M. Yasuoka, Y. Nishimura, T. Nagaoka and K. Watari, J. Thermal Anal. and Calori. 83 (2006) p.407.

[24] O. P. Thakur, C. Prakash and D. K. Agrawal, J. Ceram. Proc. Res. 3 (2002) 75.

[22] I. W. Turner and P. G. Jolly, Drying Technol., Vol. 9(1991), p.1209.

Fetching data from Crossref.
This may take some time to load.