Synthesis and Characterization of Mesostructured Silicas and Gold Frameworks as Active Matrices for Biomolecule Encapsulation


Article Preview

Interfacing of biomolecules to inorganic frameworks is essential for fabricating robust, functionally integrated biocomposites that may prove useful in a wide range of technologies including biocatalysis, biosensors or protein-based devices. Our work is directed at developing means to integrate biomolecules into mesostructured inorganics. These frameworks serve to both improve the mechanical stability of the proteins and to facilitate communication with them. Toward that end, we have synthesized and characterized mesoporous silicas and conductive metallic frameworks and have examined the encapsulation of both soluble (cytochrome c) and membrane proteins (bacteriorhodpsin) within them.



Edited by:







L. E. Iton et al., "Synthesis and Characterization of Mesostructured Silicas and Gold Frameworks as Active Matrices for Biomolecule Encapsulation", Advances in Science and Technology, Vol. 51, pp. 30-37, 2006

Online since:

October 2006




[1] Weetall, H. H. App. Biochem. Biotech. 1993, 41, 157.

[2] Gill, I. Chem. Mater. 2001, 13, 3404.

[3] Carrado, K. A.; Macha, S. M.; Teide, D. M. Chem. Mater. 2004, 16, 2559.

[4] Kumar, C. V.; Chaudhari, A. Chem. Mater. 2001, 13, 238.

[5] Vinu, A.; Streb, C.; Murugesan, V.; Hartmann, M. J. Phys. Chem. B 2003, 107, 8297.

[6] Han, Y. J.; Stucky, G. D.; Butler, A. J. Am. Chem. Soc. 1999, 121, 9897.

[7] Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Chem. Mater. 2000, 12, 3301.

[8] Washmon-Kriel, L.; Jimenez, V. L.; Balkus, K. J. J. Molec. Cata. B.: Enyzmatic 2000, 10, 453.

[9] Yiu, H. H. P.; Wright, P. A.; Botting, N. P. J. Molec. Cata. B.: Enyzmatic 2001, 15, 81.

[10] Yiu, H. H. P.; Botting, C. H.; Botting, N. P.; Wright, P. A. Phys. Chem. Chem. Phys. 2001, 3, 2983.

[11] Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. J. Phys. Chem. B 2002, 106, 7340.

[12] Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Catalysis Letters 2003, 85, 19.

[13] Vinu, A.; Murugesan, V.; Tangermann, O.; Hartmann, M. Chem Mater 2004, 16, 3056.

[14] Blin, J. L.; Gerardin, C.; Carteret, C.; Rodehuser, C.; Selve, C.; Stebe, M. J. Chem. Mater. 2005, 17, 1479.

[15] Lei, C.; Shinn, Y.; Liu, J.; Ackermann, E. J. J. Am. Chem. Soc. 2002, 124, 11242.

[16] Smith, K.; Silvernail, N. J.; Rodgers, K. R.; Elgren, T. E.; Castro, M.; Parker, R. M. J. Am. Chem. Soc. 2002, 124, 4247.

[17] Blanco, R. M.; Terreros, P.; Fernandez-Perez, M.; Otero, C.; Diaz-Gonzalez, G. J. Molec. Cata. B.: Enyzmatic 2004, 30, 83.

[18] Kisler, J. M.; Stevens, G. W.; O'Connor, A. J. Mater. Phys. Mech. 2001, 4, 89.

[19] Fan, J.; Lei, J.; Wang, L.; Yu, C.; Tu, B.; Zhao, D. Chem. Comm. 2003, 2140.

[20] Moller, K.; Bein, T.; Fischer, R. X. Chem. Mater. 1998, 10, 1841.

[21] Corma, A.; Kan, Q.; Navarro, M. T.; Perez-Pariente, J.; Rey, F. Chem. Mater. 1997, 9, 2123.

[22] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. (23) Mauk, A. G. Cytochrome c, A multidisciplinary approach; University Science Books: Sausalito, CA, (1996).

[24] Oesterhelf, D.; Stoeckenius, W. Methods Enzymol. 1974, 31A, 667.

[25] Firestone, M. A.; Wolf, A. C.; Seifert, S. Biomacromolecules 2003, 4, 1539.

[26] Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.

[27] Broekhoff, J. C. P.; de Boer, J. H. J. Catal. 1968, 10, 377.

[28] Babul, J.; Stellwagen, E. Biochemistry 1972, 11, 1195.

[29] Rosell, F.; Mauk, A. G. Biochemistry 2002, 41, 7811.

[30] Goto, Y.; Calciano, L. J.; Fink, A. Proc. Natl. Acad. Sci. USA 1990, 87, 573.

[31] Peisach, J.; Blumberg, W. E.; Ogawa, S.; Rachmilewitz, E. A.; Oltzik, R. J. Biol. Chem. 1971, 246, 3342.

[32] Telford, J. R.; Tezcan, F. A.; Gray, H. A.; Winkler, J. R. Biochemistry 1999, 38, 194.

In order to see related information, you need to Login.