Self-Assembled Low-Resistivity NiSi Nanowire Arrays on Epitaxial Si0.7Ge0.3 on (001)Si

Abstract:

Article Preview

Self-assembled low-resistivity NiSi nanowire arrays have been grown on relaxed epitaxial Si0.7Ge0.3 on (001)Si. The formation of the one-dimensional ordered structure is attributed to the nucleation of NiSi nanodots on the surface undulations induced by step bunching on the surface of SiGe film owing to the miscut of the wafers from normal to the (001)Si direction. Furthermore, the nanodots were connected along individual arrays and turned into nanowires with increasing amount of Ni and a-Si. Since the periodicity of surface bunching can be tuned with appropriate vicinality and misfit, the undulated templates promise to facilitate the growth of ordered, catalyst-free NiSi nanowires with selected periodicity and size for utilization in high-speed Si-Ge nanodevices.

Info:

Periodical:

Edited by:

P. VINCENZINI and G. MARLETTA

Pages:

42-47

DOI:

10.4028/www.scientific.net/AST.51.42

Citation:

W. W. Wu and L. J. Chen, "Self-Assembled Low-Resistivity NiSi Nanowire Arrays on Epitaxial Si0.7Ge0.3 on (001)Si", Advances in Science and Technology, Vol. 51, pp. 42-47, 2006

Online since:

October 2006

Export:

Price:

$35.00

[1] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber: Nature Vol. 430 (2004), p.61.

[2] W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, and L. J. Chen: Appl. Phy. Lett. Vol. 83 (2003), p.1836.

[3] S.S. Lau and M.A. Nicolet, in Materials and Process Characterization, edited by N.G. Einspruch and G.B. Larrabee (Academic Press, New York, 1983) p.329.

[4] J.H. Zhu, K. Brunner, and G. Abstreiter: Appl. Phys Lett. Vol. 73 (1998), p.620.

[5] C. Teichert, J.C. Bean, and M.G. Lagally, Appl. Phys. A Vol. 67 (1998), p.675.

[6] K. Brunner: Rep. Prog. Phys. Vol. 65 (2002), p.27.

[7] A. Rainer, C. A. Oral, F. Janice, B. Abhijit, K. Rainer, E. Mady, K. Jörn, S. Ulrich, and F. Franz: Nature Mater. Vol. 3 (2004), p.375.

[8] M. P. Zach, K. H. Ng, and R. M. Penner: Science Vol. 290 (2000), p.2120.

[9] E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, and R. M. Penner: J. Phys. Chem. B Vol. 106 (2002), p.11407.

[10] H. C. Hsu, H. F. Hsu, T. F. Chiang, K. F. Liao and L. J. Chen: Jpn. J. Appl. Phys. Vol. 43 (2004), p.4537.

[11] Zhian He, M. Stevens, David J. Smith, P.A. Bennett: Surf. Sci. Vol. 524 (2003), p.148.

[12] C. Preinesberger, S. K. Becker, S. Vandre'm, T. Kalka, and M. Dahne: J. Appl. Phys. Vol. 91 (2002), p.1695.

[13] J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge: Phys. Rev. B Vol. 63 (2001), p.233305.

[14] Zhian He, M. Stevens, David J. Smith, and P. A. Bennett: Appl. Phys. Lett. Vol. 83 (2003), p.5292.

[15] C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers: and D. R. Evans, Appl. phys. Lett. Vol. 84 (2004), p.1389.

[16] P. Kluth, Q. T. Zhao, S. Winnerl, S. Lenk, and S. Mantl: Appl. Phys. Lett. Vol. 79 (2001), p.824.

[17] Andrea Tao, Franklin Kim, Christian Hess, Joshua Goldberger, Rongrui He, Yugang Sun, Younan Xia, and Peidong Yang: Nano Lett. Vol. 3 (2003), p.1229.

DOI: 10.1021/nl0344209

[18] Dongmok Whang, Song Jin, Yue Wu, and Charles M. Lieber: Nano Lett. Vol. 3 (2003), p.1255.

[19] Peidong Yang: Nature Vol. 425 (2003), p.243.

In order to see related information, you need to Login.