Utilization of NbC Nanoparticles Obtained by Reactive Milling in Production of Alumina Niobium Carbide Nanocomposites


Article Preview

The increased interest in nanostructured materials is due to improvements in the mechanical properties presented for these materials. Significant increases in properties such as hardness, wear resistance and in some cases, strength and toughness of nanostructured ceramics have been reported, compared to conventional ceramics. High-energy milling can lead to selfsustaining reactions in a variety of systems. In this study, reactive high-energy milling was used to synthesis niobium carbide (NbC) nanoparticles. The reaction products were de-agglomerated and mixed with commercial ultra-fine alumina powder to produce alumina matrix nanocomposites with 5vol% of nanometric NbC. Alumina/NbC nanocomposite produced using powder obtained by reactive present good microstructural characteristic, high densities, good hardness and higher toughness. What makes this material an interesting alternative for production of ceramic cutting tools.



Edited by:

Pietro VINCENZINI, Ralf RIEDEL, Alexander G. MERZHANOV and Chang-Chun GE




V. Trombini et al., "Utilization of NbC Nanoparticles Obtained by Reactive Milling in Production of Alumina Niobium Carbide Nanocomposites", Advances in Science and Technology, Vol. 63, pp. 257-262, 2010

Online since:

October 2010




[1] K. Niihara. The Centennial Mem. Issue of the Ceram. Soc. Jpn. Vol. 99.

[10] (1991), p.974.

[2] K. Niihara, A. Nakahira; G. Sasaki and M. Hirabayashi. Proceedings on International Meeting on Advanced Materials, Materials Research Society, Japan, (1989), p.129.

[3] Y. W. Kim and J. G. Lee. J. Am. Ceram. Soc. Vol. 72.

[8] (1989), p.133.

[4] R. J. Brook and R. A. D. Mackenzie. Composite Materials, Vol. (1993), p.27.

[5] S. M Choi, H. Avaji, Sci. Tech. of Advanced Mat., Vol. 6 (2005), p.2.

[6] J. Schneider, Manufacturing Eng., Vol. 122, (1999), p.66.

[7] L.L. Wang, Z.A. Munir and M. Maximov. J. Mat. Sci. Vol. 28 (1993), p.3693.

[8] G.B. Schaffer and P.G. McCormick; Metall. Trans. A, Vol. 21A (1990), p.2789.

[9] P. Matteazzi and G. Le Caër, J . Am. Ceram . Soc., Vol. 74.

[6] (1991), p.1382.

[10] W. J. Botta Fo, D.E. Hanai, B. N. Santana, N. R. Oliveira Jr. and R. Tomasi. Materials Science Forum, Vol. 179-181 (1995), p.635.

DOI: https://doi.org/10.4028/www.scientific.net/msf.179-181.635

[11] R. Tomasi, E.M.J.A. Pallone, W.J. Botta Fo., Materials Science Forum Vol. 312-314 (1999), p.333.

[12] W.J. Botta Fo., R. Tomasi, E.M.J.A. Pallone, A.R. Yavari. Scripta Mater Vol. 44 (2001), p.1735.

[13] L. Takacs and V. Sepelák, Journal of Materials Science, Vol. 29, 16-17, (2004), p.5487.

[14] L. Takacs, Int. J. Self-Propagating High-Temperature Synthesis Vol. 18, 4, (2009), p.276.

[15] E. M. J. A. Pallone, V. Trombini W. J. Botta Fo, R. Tomasi, Materials Science Forum, Suiça, Vol. 14, (2002), p.65.

[16] E. M. J. A. Pallone, V. Trombini, W.J. Botta Fo and R. Tomasi, J. Mat. Proc. Tech. Vol. 143, (2003), p.185.

[17] Annual Book of ASTM Standards. Advanced Ceramics. Vol. 15, 1, (2000) p.471.