Hydrogen Effect on Structure and Mechanical Properties of ZnO Films Deposited in Ar/H2 Plasma

Abstract:

Article Preview

In the present work the mechanical properties of ZnO thin films, deposited on Si (100) substrates, were studied using the nanoindentation technique. ZnO thin films were deposited by radiofrequency sputtering from a ZnO target with different H2/Ar gas mixtures. During the deposition the plasma species were in-situ monitored using optical emission spectroscopy (OES). The results showed that the introduction of H2 in the plasma phase had a strong effect on the material’s hardness and elastic modulus. The measured elastic modulus values were then related to the material density to estimate the porosity of the ZnO films. We found an increased film porosity when H2 was added to the sputtering gas, from 6% to 18% in volume. Moreover we found that the porosity was correlated by the emission intensity ratio of atomic Argon on atomic Hydrogen.

Info:

Periodical:

Edited by:

Pietro VINCENZINI and Ghislain MONTAVON

Pages:

156-161

DOI:

10.4028/www.scientific.net/AST.66.156

Citation:

R. Bartali et al., "Hydrogen Effect on Structure and Mechanical Properties of ZnO Films Deposited in Ar/H2 Plasma", Advances in Science and Technology, Vol. 66, pp. 156-161, 2010

Online since:

October 2010

Export:

Price:

$35.00

[1] T. Sakai,S. Hoshiai, E. Nakamachi, Journal of optoelectronic and advanced materials, Vol. 8, No. 4, August 2006, pp.1435-1437.

[2] C. Woll, Progress in Surface Science 82 (2007) 55-120.

[3] S. P Heluani, G. braunstein, M. Villafuerte, G. Simonelli, S. Duhalde, Thin Solid Films 515 (2006) 2379-2386.

DOI: 10.1016/j.tsf.2006.04.038

[4] V. Rico, C. López, A. Borrás, J.P. Espinós, A.R. González-Elipe, Solar Energy Materials & Solar Cells 90 (2006) 2944-2949.

DOI: 10.1016/j.solmat.2006.05.005

[5] Z. Chen, Y. Tang, L. Zhang, L. Luo, Electrochimica Acta 51 (2006) 5870-5875.

[6] N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, International journal of hydrogen energy 35 (2010) 4428-4434.

DOI: 10.1016/j.ijhydene.2010.02.006

[7] D. Dimova-Malinovska. H Nichev, O. Angelov, V. Grigorov, M. Kamenova, Superlattices and Microstructures 42 (2007) 123-128.

DOI: 10.1016/j.spmi.2007.04.025

[8] G. Gottardi,N. Laidani, V. Micheli, R. Bartali, M. Anderle, Surface & Coating Technology 202 (2008) 2332-2337.

[9] M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, T. Hirao, Journal of Non- Crystalline Solids, 354 (2008) 1926-(1931).

DOI: 10.1016/j.jnoncrysol.2007.10.024

[10] W.C. Oliver, G. M Pharr, Journal of Materials Research, 6 (1992) 1564.

[11] S. J Bull, J. Phys. D: Appl. Phys. 38(2005) R393-R413.

[12] N.B. Colthup L.H. Daly, S. E Wiberly, Introduction of infrared and Raman Spectroscopies, Academic Press, New York, (1969).

[13] S. Ben Armor , B. Rogier, G. Baud, M. Jacquet, M. Nardin, Materia. Sci. Eng., B, Solid – State Mater. Adv Technol . 57 (1998) 28.

[14] B. -O. Cho, S.X. Lao, J.P. Chang, Journal Applied Physics 93 (11) (2003) 9345.

[15] M. Neuhäuser, S. Bärwulf, H. Hilgers, E. Lugscheider, M. Riester, Surface and Coating Technology 116-119 (1999) 981-985.

DOI: 10.1016/s0257-8972(99)00214-5

[16] P. Tristant, Z. Ding, Q.B. Trang Vinh, H. Hildalgo, J.L. Jauberteau, J. Desmaison, C. Dong, Thin Solid Film 390 (2001) 51-58.

DOI: 10.1016/s0040-6090(01)00924-5

[17] N. Joshy, Johney Isaac, and M. K Jayarai, Journal of Applied Physics 103, 123305 (2008).

[18] E.T. Lilleodden W.D. Nix, Acta Materialia 54 (2006) 1583-1593.

[19] Alex A. Volinsky, William W. Gerberich, Microelectronic Engineering 69 (2003) 519-527.

[20] K. Zeng, F Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Thin Solid Films (2003) 60-65.

[21] R. Navamathavan, K-k Kim, D-K Hwang, S-J Park, J-H Hahn, T-G Lee, G-S Kim, Applied Surface Science 253 (2006) 464-467.

In order to see related information, you need to Login.