NTC Ceramics: Past, Present and Future


Article Preview

In contrast with metals, the resistivity of ceramics decreases with increasing temperatures. This phenomenon was first discovered in 1833 by Faraday and remained a mere scientific curiosity until 1930, when Samuel Ruben proposed the fabrication of a pyrometer device, which explored the negative temperature coefficient (NTC) of resistance exhibit by Cu2O. Eight decades later, NTC ceramic thermistors constitute an important business segment for most electroceramic manufacturers. Here, we present a review of the most significant scientific and technological advances, which lead to the enormous commercial success of NTC thermistors. This review concludes with an outlook into future possible applications of NTC ceramics, providing that some current technological shortcomings (such as ageing) are resolved.



Edited by:

Pietro VINCENZINI, Vojislav V. MITIC, Alois LOIDL and Dino FIORANI






A. Feteira and K. Reichmann, "NTC Ceramics: Past, Present and Future", Advances in Science and Technology, Vol. 67, pp. 124-133, 2010

Online since:

October 2010




[1] A. Feteira: J. of the Amer. Ceram. Soc., Vol. 92 (2009), pp.967-983.

[2] C. C. Wu and T. O. Mason: J. Am. Ceram. Soc., Vol. 64 (1981), p.520–522.

[3] E. J. Verwey, P. W. Haayman, and F. C. Romeijn: J. Chem. Phys., Vol. 15 (1947), p.181–187.

[4] C. Metzmacher, W. A. Groen, and I. M. Reaney: Phy. Status Solidi A-Appl. Res., Vol 181 (2000), p.369–386.

[5] Moulson and Herbert, Electroceramics, London, (1994).

[6] J. A. Becker, C. B. Green, and G. L. Pearson: Bell System Tech. J., Vol. 26 (1947), p.170–212.

[7] H. Yongde, C. Lujin, L. Hong, Z. Dongxiang and G. Shuping: Sen. And Act., Vol. 35 1993, 269-272.

[8] K. Park, J.K. Lee, S. -J. Kim, W. -S. Seo, W. -S. Cho, C. -W. Lee and S. Nahm: J. Allo. and Comp., Vol. 467 (2009), pp.310-316.

[9] K. Park and I.H. Han: J Electroceram Vol. 17(2006), p.1069–1073.

[10] K. Park and I.H. Han: Mat. Sci. and Eng. B, Vol. 119 (2005), pp.55-60.

[11] K. Park , S.J. Kim, J. -G. Kim and S. Nahm: J. Eur. Ceram. Soc., Vol. 27 (2007), p.2009–(2016).

[12] K. Park and J.K. Lee: J. Allo. and Comp., Vol. 475 (2009), pp.513-517.

[13] K. Park: J. Eur. Ceram. Soc., Vol. 26 (2006), p.909–914.

[14] A. Feltz: J. Eur. Ceram. Soc., Vol. 20 (2000), p.2367–2376.

[15] M. Deepa, P. P. Rao, S. Sumi, A. N. P. Radhakrishnan and P. Koshy: . J. of the Amer. Ceram. Soc., in press.

[16] D. Houivet, J. Bernard, and J.M. Haussonne: J. Eur. Ceram. Soc., Vol. 24 (2004), p.1237–1241.

[17] M. Vakiv, O. Shpotyuk, O. Mrooz, and I. Hadzaman: J. Eur. Ceram. Soc., Vol. 21 (2001), p.1783–1785.

[18] D. G. Wickham: J. Inorg. Nucl. Chem., Vol. 26 (1964), p.1369–1377.

[19] A. Macher, K. Reichmann, O. Fruhwirth, K. Gatterer, and G. W. Herzog,: Inform. Midem-J. Microelectron. Electron. Components Mater., Vol. 26 (1996), pp.79-85.

[20] W. A. Groen, C. Metzmacher, P. Huppertz, and S. Schuurman: J. Electroceram., Vol. 7(2001), p.77–87.

[21] P. Castelan, B. Ai, A. Loubiere, A. Rousset, and R. Legros: ' J. Appl. Phys., Vol. 72 (1992), p.4705–4709.

[22] S. Fritsch, J. Sarrias, M. Brieu, J. J. Couderc, J. L. Baudour, E. Snoeck, and A. Rousset: Solid State Ionics, Vol. 109 (1998), p.229–237.

In order to see related information, you need to Login.