Thermomechanical Characterization of Monolithic Refractory Castables


Article Preview

This paper deals with the characterization of the thermomechanical behavior of monolithic refractory castables in a wide temperature range, up to 1200°C. Different test types are considered: tensile tests, compression tests, bending tests and tests on more complex shapes and geometries. A particular attention is paid to the detailed characterization and interpretation of the non-linear behaviors of these materials. Monotonic, cyclic and creep tests are considered. In some cases, digital image correlation (DIC) methods can be coupled to mechanical tests to obtain strain fields. Such results are particularly interesting to observe and to understand damage processes. As damage is a major characteristic of the monolithic castable behaviors, links are established between the thermomechanical behavior and damage mechanisms. Two main scales are taken into account for damage characterization: the macroscopic and the microscopic ones. Main mechanisms that are considered deal with microcracking, macrocracking, debonding and cavitation. Two types of materials are considered: non-reinforced and fiber reinforced refractory castables.



Edited by:





T. Cutard et al., "Thermomechanical Characterization of Monolithic Refractory Castables", Advances in Science and Technology, Vol. 70, pp. 37-46, 2010

Online since:

October 2010




[1] Kakroudi M, E Yeugo Fogain, C Gault, M Huger and T Chotard, Effect of thermal treatment on damage mechanical behavior of refractory castables : Comparison between bauxite and andalusite aggregates. Journal of the European Ceramic Society, 2008. 28: pp.2471-2478.


[2] Lemaistre H, Etude des propriétés thermomécaniques de divers réfractaires. 1998, Thèse de doctorat, Institut National des Sciences Appliquées de Lyon., France.

[3] Marzagui H, Etude de deux bétons réfractaires silico-alumineux : microstructures et comportements thermomécaniques en traction et en flexion. 2005, Thèse de doctorat, Université Toulouse 3, France.

[4] Nonnet E, Etude de la température ambiante à 1600°C, par méthode ultrasonore, de réfractaires monolithiques. 1999, Thèse de doctorat, Université Paris 6, France.

[5] Prompt N, Etude du comportement thermomécanique d'un béton réfractaire alumineux. Application à une rigole de haut fourneau. 2000, Thèse de doctorat - INPG - Grenoble, France.

[6] Roosefid M, Etude du comportement thermomécanique de deux bétons réfractaires silico-alumineux : Applications à une poche d'acierie. 2006, Thèse de doctorat, INPG - Grenoble, France.

[7] Yeugo Fogaing E, Caractérisation à haute température des propriétés d'élasticité de réfractaires électrofondus et de bétons réfractaires. 2006, Thèse de doctorat, Université de Limoges, France.

[8] F. Nazaret, H. Marzagui, T. Cutard, Influence of the mechanical behaviour specificities of damaged refractory castables on the Young's modulus determination, Journal of the European Ceramic Society, 26, pp.1429-1438, (2006).


[9] F. Nazaret and T. Cutard and G. Bernhart, Thermomechanical behaviour of a fibre-reinforced refractory concrete: tests and analysis, Sixth RILEM Symp. on FRC, Varenna (Italie), 689-698, September (2004).

[10] H. Marzagui, T. Cutard, Characterization of microstructural evolutions in refractory castables by in situ high temperature ESEM, Journal of Materials and Processing Technology, vol. 155-156, pp.1474-1481, (2004).


[11] L. Robert, F. Nazaret, T. Cutard, J.J. Orteu, Use of Digital Image Stereo-Correlation (DISC) to characterize the mechanical behavior of refractory castable, Experimental Mechanics, 47(6), December 2007, pp.761-773.


[12] F. Nazaret, Caractérisation et modélisation du comportement thermomécanique d'un béton réfractaire renforcé de fibres, 2005, Thèse de doctorat, Ecole des Mines de Paris, France.

[13] E. Cailleux, T. Cutard, G. Bernhart, Study of a ceramic refractory reinforced with metallic fibres : from the microstructure to the mechanical behaviour, Industrial Ceramics, vol. 25, n°1, pp.21-26, (2005).

[14] A. Mazzoni, T. Cutard, Thermomechanical behaviour of refractory concretes: effect of a mineral fibre reinforcement. ICC2, Verona (Italy), June (2008).

[15] A. Mazzoni, Comportement thermomécanique d'un béton réfractaire : effet du renforcement par des fibres minerals, 2009, Thèse de doctorat, Université Paul Sabatier-Toulouse, France.