Rare – Earth – Doped Silicate Glass – Ceramic Thin Films for Integrated Optical Devices


Article Preview

The possibility to confine the light in optical planar structures represented the milestone for the development of integrated optical devices in different application areas, such as communications and sensing. In particular, rare-earth (RE) doped planar waveguides demonstrated to be an interesting solution in the realization of integrated optical lasers and amplifiers suitable for the generation/regeneration of the signal in metropolitan and local area networks. Nowadays, although these devices are commercially available, the major contribution of the research consists in discovering and developing better combinations of materials and fabrication processes, in order to reduce the costs and increase the performance of the aforesaid devices. In this context glass-ceramic waveguides, activated by RE ions, seem to fully respond to these requests. The aim of this paper is to offer a comprehensive review on the main results obtained in our Labs in the field of glassceramics. Fabrication and characterization of different silicate glass-ceramic thin films, doped with different percentages of RE ions, will be presented and discussed. The interesting results obtained make these systems quite promising for development of high performance integrated optical amplifiers and lasers.



Edited by:

Pietro Vincenzini, Maurizio Ferrari and Mrityunjay Singh






S. Berneschi et al., "Rare – Earth – Doped Silicate Glass – Ceramic Thin Films for Integrated Optical Devices", Advances in Science and Technology, Vol. 71, pp. 6-15, 2010

Online since:

October 2010




[1] A. J. Kenyon, Prog. in Quantum Electron. 26 (2002), p.225.

[2] J. I. Mackenzie, IEEE J. Sel. Top. Quantum Electron. 13 (2007), p.626.

[3] D. R. Zimmermann, L. H. Spiekman, IEEE J. Light. Tech. 22 (2004), p.63.

[4] W. J. Miniscalco, J. Light. Tech. 9 (1991), p.234.

[5] B. Jacquier, L. Bigot, S. Guy, A. M. Jurdyc, Rare Earth Doped Confined Structures for Laser and Amplifiers, in Spectroscopic Properties of Rare Earths in Optical Materials, Springer, (2005), p.430.

DOI: 10.1007/3-540-28209-2_8

[6] M. Mortier, Phil. Mag. B 82 (2002), p.745.

[7] M. Mortier, F. Auzel, J. Non-Cryst. Solids 256-257 (1999), p.361.

[8] F. Auzel, P. Goldner, Opt. Mat. 16 (2001), p.93.

[9] P. A. Tick, N. F. Borrelli, I. M. Reaney, Opt. Mat. 15 (200), p.81.

[10] V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, R. Rolli, Appl. Phys. Lett. 81 (2002), p. (1937).

DOI: 10.1063/1.1497196

[11] V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, M. Mortier, Opt. Exp. 15 (2007), p.9535.

[12] R. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. C. Righini, S. Pelli, S. J. L. Ribeiro, Y. Messadeq, Appl. Phys. Lett. 81 (2002), p.28.

DOI: 10.1063/1.1489477

[13] A. Peled, A. Chiasera, M. Nathan, M. Ferrari, S. Ruschin, Appl. Phys. Lett. 92 (2008), p.221104.

DOI: 10.1063/1.2936961

[14] Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, G. C. Righini, Appl. Phys. Lett. 91 (2007), p.071909.

DOI: 10.1063/1.2771537

[15] S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, S. Turrell, Appl. Phys. Lett. 93 (2008), p.211904.

DOI: 10.1063/1.3037224

[16] G. Brambilla, V. Pruneri, L. Reekie, Appl. Phys. Lett. 76 (2000), p.807.

[17] N. Chiodini, A. Paleari, G. Spinolo, Proc. SPIE 4987 (2003), p.60.

[18] Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, C. Goyes, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, R. Retoux, G. C. Righini, G. Speranza, J. Non-Cryst. Solids 353 (2007), p.494.

DOI: 10.1016/j.jnoncrysol.2006.10.016

[19] G. C. Righini, S. Berneschi, G. Nunzi Conti, S. Pelli, E. Moser, R. Retoux, P. Féron, R. R. Gonçalves, G. Speranza, Y. Jestin, M. Ferrari, A. Chiasera, A. Chiappini, C. Armellini, J. Non-Cryst. Solids 355 (2009), p.1853.

DOI: 10.1016/j.jnoncrysol.2008.12.022

[20] S. N. B. Bhaktha, S. Berneschi, G. Nunzi Conti, G. C. Righini, A. Chiappini, A. Chiasera, M. Ferrari, S. Turrell, accepted for publication in Proc. SPIE (Photonics Europe Congress) 7719 (2010).

DOI: 10.1117/12.854894

[21] Y. Jestin, N. Afify, C. Armellini, S. Berneschi, S. N. B. Bhakta, B. Boulard, A. Chiappini, A. Chiasera, G. Dalba, C. Duverger, M. Ferrari, C. E. Goyes Lopez, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G. C. Righini, F. Rocca, Proc. SPIE 6183, (2006).

DOI: 10.1117/12.664610

[22] N. D. Afifi, G. Dalba, F. Rocca, M. Ferrari, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48 (2007), p.229.

[23] L. Minati, G. Speranza, V. Micheli, M. Ferrari, Y. Jestin, J. Phys. D: Appl. Phys. 42 (2009), p.015408.

[24] S. N. B. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. R. Cristini, F. Beclin, P. Roussel, M. Ferrari M. Ferrari, S. Turrell, J. Phys. Chem. C 113 (2009), p.21555.

DOI: 10.1021/jp907764p

[25] R. D. Robinson, J. Tang, M. L. Steigerwald, L. E. Brus, I. P. Herman, Phys. Rev. B 71 (2005), p.115408.

[26] M. Montagna, E. Moser, F. Visintainer, M. Ferrari, L. Zampedri, A. Martucci, M. Guglielmi, M. Ivanda, J. Sol. Gel. Sci. Tech. 26 (2003), p.241.

DOI: 10.1023/a:1020755200573

[27] S. Loridant, J. Phys. Chem. B 106 (2002), p.13273.

[28] E. Duval, A. Boukenter, B. Champagnon, Phys. Rev. Lett. 56 (1986), p. (2052).

[29] M. Nogami, T. Enomoto, and T. Hayakawa, J. Lumin. 97 (2002), p.147.

[30] E.A. Morais, S.J.L. Ribeiro, L.V.A. Scalvi, C.V. Santilli, L.O. Ruggiero, S.H. Pulcinelli, Y. Messaddeq, J. Alloy. Comp. 344 (2002), p.217.

In order to see related information, you need to Login.