Tungsten as a Structural Divertor Material

Abstract:

Article Preview

Refractory materials, in particular tungsten base materials are considered as primary candidates for structural high heat load applications in future nuclear fusion power plants. Promising helium-cooled divertor design outlines make use of their high heat conductivity and strength. The upper operating temperature limit is mainly defined by the onset of recrystallization but also by loss of creep strength. The lower operating temperature range is restricted by the use of steel parts for the in- and outlets as well as for the back-bone. Therefore, the most critical issue of tungsten materials in connection with structural divertor applications is the ductile-to-brittle transition. Another problem consists in the fact that especially refractory alloys show a strong correlation between microstructure and their manufacturing history. Since physical and mechanical properties are influenced by the underlying microstructure, refractory alloys can behave quite different, even if their chemical composition is the same. Therefore, creep and thermal conductivity have been investigated using typical commercial tungsten materials. Moreover, the fracture behavior of different tungsten based semi-finished products was characterized by standard Charpy tests which have been performed up to 1100 °C in vacuum. Due to their fabrication history (powder mixing, pressing, sintering, rolling, forging, or swaging) these materials have specific microstructures which lead different fracture modes. The influence of the microstructure characteristics like grain size, anisotropy, texture, or chemical composition has been studied.

Info:

Periodical:

Edited by:

Pietro VINCENZINI, Hua-Tay LIN and Kevin FOX

Pages:

11-21

DOI:

10.4028/www.scientific.net/AST.73.11

Citation:

M. Rieth et al., "Tungsten as a Structural Divertor Material", Advances in Science and Technology, Vol. 73, pp. 11-21, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.