High Energy Milling of Zirconia: A Systematic Critical Review on the Phase Transformation


Article Preview

The phase transformation of zirconia from monoclinic to tetragonal polymorph at room temperature under mechanical processing has been a subject of a great interest due to technological importance of this material. Mechanism of this transformation has been widely investigated and plenty of explanation theories of zirconia stabilisation have been developed as well. This article critically reviews the systematic development regarding this transformation under mechanical processing and includes the summarised results of key-publications on this topic.



Edited by:

Pietro Vincenzini




N. Gorodylova et al., "High Energy Milling of Zirconia: A Systematic Critical Review on the Phase Transformation", Advances in Science and Technology, Vol. 87, pp. 6-11, 2014

Online since:

October 2014




[1] R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem. 69 (1965) 1238-1243.

DOI: https://doi.org/10.1021/j100888a024

[2] E.D. Whitney, Kinetics and mechanism of the transition of metastable tetragonal to monoclinic zirconia, Trans. Faraday Soc. 61 (1965) 1991-(2000).

DOI: https://doi.org/10.1039/tf9656101991

[3] K.S. Mazdiyasni, C.T. Lynch, J.S. Smith, Metastable transitions of zirconium oxide obtained from decomposition of alkoxides, J. Amer. Ceram. Soc. 49 (1966) 286-287.

[4] J.E. Bailey, D. Lewis, Z.M. Librant, L.J. Porter, Phase transformation in milled zirconia, Transactions J. British Ceram. Soc. 71 (1972) 25-30.

[5] A.N. Scian, E.F. Aglietti, Phase transformations in monoclinic zirconia caused by milling and subsequent annealing, J. Amer. Ceram. Soc. 77 (1994) 1525-1530.

DOI: https://doi.org/10.1111/j.1151-2916.1994.tb09752.x

[6] M. Golzar-Shahri, A. Saidi, A. Shafyei, Effect of mechanical activation on phase transformation of zirconia, Amirkabir 17 (2006) 1-7.

[7] G. Stefanic, S. Music, A. Gajovic, Structural and microstructural changes in monoclinic ZrO2 during the ball-milling with stainless steel assembly, Mater. Res. Bull. 41 (2006) 764-777.

DOI: https://doi.org/10.1016/j.materresbull.2005.10.006

[8] O. Ruff, F. Ebert, Refractory ceramics. I. The forms of zirconium dioxide, Z. Anorg. Allgem. Chem. 180 (1929) 19-41.

[9] A. Clearfield, Crystalline hydrous ZrO2, Inorg. Chem. 3 (1964) 146-148.

[10] R. Cypres, R. Wollast, J. Raucq, Polymorphic conversion of pure zirconia, J. Ber. Deut. Keram. Ges. 40 (1963) 527-532.

[11] B.C. Weber, M.A. Schwartz, Zirconium oxide, its crystal polymorphism and its suitability as a material for high temperatures, Ber. Deutsch. Keram. Ges. 34 (1957) 391-396.

[12] M.I. Osendi, J.S. Moya, C.J. Serna, J. Soria, Metastability of tetragonal zirconia powders, J. Amer. Ceram. Soc. 68 (1987) 135-139.

[13] M.J. Torralvo, M.A. Alario, J. Soria, Crystallization behavior of zirconium oxide gels, J. Catal. 86 (1984) 473-476.

[14] M.I. Osendi, J.S. Moya, C.J. Serna, J. Soria, Metastability of tetragonal zirconia powders, J. Amer. Ceram. Soc. 68 (1985) 135-139.

[15] G. Stefanic, S. Music, Factors influencing the stability of low temperature tetragonal ZrO2, Croatia Chem. Acta 75 (2002) 727-767.

[16] T. Mitsuhashi, M. Ichihara, U. Tatsuke, Characterisation and stabilization of metastable tetragonal ZrO2, J. Amer. Ceram. Soc. 57 (1974) 97-101.

DOI: https://doi.org/10.1111/j.1151-2916.1974.tb10823.x

[17] G.L. Clark, D.H. Reynolds, Chemistry of Zirconium Dioxide X-Ray Diffraction Studies, Ind. Eng. Chem. 29 (1937) 711–715.

DOI: https://doi.org/10.1021/ie50330a027

[18] I.A. El-Shanshoury, V.A. Rudenko, I.A. Ibrahim, Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides, J. Amer. Ceram. Soc. 53 (1970) 264-268.

DOI: https://doi.org/10.1111/j.1151-2916.1970.tb12090.x

[19] R.C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (1978) 218-224.

[20] A. Krauth, H. Meyer, Modifications produced by quenching and the crystal growth in system containing ZrO2, Ber. Deutsch. Keram. Ges. 42 (1965) 61-72.

[21] K.S. Mazdiyasni, C.T. Lynch, J.S. Smith, Preparation of ultrahigh purity submicron refractory oxides, J. Amer. Ceram. Soc. 48 (1965) 372-375.

[22] Y. Murase, E. Kato, Effects of water on the crystallization of zirconium dioxide, Ber. Deutsch. Keram. Ges. 57 (1980) 86-88.

[23] Yu.M. Polezhaev, Low-temperature cubic and tetragonal forms of zirconium dioxide, Zh. Fiz. Khim. 41 (1967) 2958-2959.

[24] Y. Murase, E. Kato, Phase transformation of zirconia by ball-milling, J. Amer. Ceram. Soc. 62 (1979) 527.

[25] D.T. Livey, P. Murray, Surface energies of solid oxides and carbides, Atomic Energy Research Estab. (Gt. Brit. ) 1846 (1956) 21.

[26] E.D. Whitney, Effect of pressure on monoclinic-tetragonal transition of zirconia: Thermodynamics, J. Amer. Ceram. Soc. 45 (1962) 612-613.

[27] G. Teufer, The crystal structure of tetragonal ZrO2, Acta Cryst. 15 (1962) 1187.

DOI: https://doi.org/10.1107/s0365110x62003114

[28] J.D. McCullough, K.N. Trueblood, The crystal structure of baddeleyite (monoclinic ZrO2), Acta Cryst. 12 (1959) 507-511.

DOI: https://doi.org/10.1107/s0365110x59001530

[29] N. Claussen, M. Ruhle, A.H. Heuer, Advances in Ceramics, Vol. 12: Science and Technology of Zirconia 2, The American Ceramic Society Inc., Columbus, (1983).

[30] R.C. Garvie, M.V. Swaine, Thermodinamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals, J. Mater. Sci. 20 (1985) 1193-1200.

[31] A. Gajovic, K. Furic, G. Stefanic, S. Music, In situ high temperature study of ZrO2 ball-milling to nanometer sizes, J. Molec. Sruc. 744-747 (2005) 127-133.

DOI: https://doi.org/10.1016/j.molstruc.2004.10.038

[32] G. Stefanic, S. Music, A. Gajovic, A comparative study of the influence of milling media on the structural and microstructural changes in monoclinic ZrO2, J. Europ. Ceram. Soc. 27 (2007) 1001-1016.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.04.136