Observing the Chiral Charge Ordering Transition in TiSe2

Abstract:

Article Preview

The charge density wave order in titanium diselenide is unusual in that it is characterized by a breakdown of inversion symmetry as well as translational symmetry, leading to the emergence of a chiral crystal structure. This novel state of matter was recently described theoretically in terms of the simultaneous and cooperative onset of both charge and orbital order. Here, we discuss the analysis of recent X-ray diffraction and related measurements on 1T-TiSe2 in terms of the predictions of that theoretical model. It is show that the experimental observations agree with the expectations from an emerging combined charge and orbital ordered phase.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

103-110

Citation:

J. van Wezel, "Observing the Chiral Charge Ordering Transition in TiSe2 ", Advances in Science and Technology, Vol. 90, pp. 103-110, 2014

Online since:

October 2014

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] G. Grüner: Density Waves in Solids (Addison-Wesley, Reading 1994).

[2] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena: Europhys. Lett. Vol. 89 (2010), p.47004.

[3] J. van Wezel and P. B. Littlewood: Physics Vol. 3 (2010), p.87.

[4] P. B. Littlewood: CRC Crit. Rev. Solid State Mater. Sci. Vol. 11 (1984), p.229.

[5] G. Giovannetti, S. Kumar, et al: Phys. Rev. Lett. Vol. 101 (2009), p.156401.

[6] J. Ishioka, Y. H. Liu, et al: Phys. Rev. Lett. Vol. 105 (2010), p.176401.

[7] J. van Wezel: Europhys. Lett. Vol. 96 (2011), p.67011.

[8] H. Fukutome: Prog. Theor. Phys. Vol. 71 (1984), p.1.

[9] J. -P. Castellan, S. Rosenkranz, et al: Phys. Rev. Lett. Vol. 110: 196404, (2013).

[10] F. Di Salvo and J. Waszczak: Phys. Rev. B Vol. 17 (1978), p.3801.

[11] A. Zunger and A. J. Freeman: Phys. Rev. B Vol. 17 (1978), p.1839.

[12] K. Rossnagel, L. Kipp, and M. Skibowski: Phys. Rev. B Vol. 65 (2002), p.235101.

[13] M. H. Whangbo and E. Canadell: J. Am. Chem. Soc. Vol. 114 (1992), p.9587.

[14] H. P. Hughes: J. Phys. C Vol. 10 (1977), p. L319.

[15] K. Motizuki, N. Suzuki, et al: Solid State Comm. Vol. 40 (1981), p.995.

[16] J. Wilson: Solid State Comm. Vol. 22 (1977), p.551.

[17] G. Li, W. Hu, et al: Phys. Rev. Lett. Vol. 99 (2007), p.027404.

[18] H. Cercellier, C. Monney, et al: Phys. Rev. Lett. Vol. 99 (2007), p.146403.

[19] C. Monney, H. Cercellier, et al: Phys. Rev. B Vol. 79 (2009), p.45116.

[20] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena: Phys. Rev. B Vol. 81 (2010), p.165109.

[21] C. Monney, G. Monney, et al: New J. Phys. Vol. 14 (2012), p.075026.

[22] J. van Wezel: Phys. Rev. B Vol. 68 (2012), p.247101.

[23] J. Ishioka and T. Fujii: Phys. Rev. B Vol. 84 (2011), p.245125.

[24] M. Iavarone and R. D. Capua: Phys. Rev. B Vol. 85 (2012), p.155103.

[25] Y. Tanaka and S. P. Collins: J. Phys. Cond. Mat. Vol. 22 (2010), p.122201.

[26] P. J. Brown and J. B. Forsyth: Acta Cryst. Vol. 52 (1996), p.408.