Electrical and Electrochemical Properties of La2xCaxNiO4 and La2xCaxNiO4–Ce0.8Sm0.2O1.9 Cathode Materials for Intermediate Temperature SOFCs

Abstract:

Article Preview

The present work focuses on the electrical properties of La2xCaxNiO4+δ (x=0–0.4) and the electrochemical performance of the cathodes based on these materials with a LаNi0.6Fe0.4O3-δ current collector in contact with a Ce0.8Sm0.2O1.9 electrolyte. The effect of the sintering temperature on the polarization resistance of La1.7Ca0.3NiO4+δ–Ce0.8Sm0.2O1.9 composites of different content has been studied by an impedance spectroscopy method. The composite electrode 50 wt.% La1.7Ca0.3NiO4+δ – 50 wt.% Ce0.8Sm0.2O1.9 sintered at the temperature below 1300°C has showed the lowest polarization resistance value equal to 0.27 Ωcm2 and in case of PrOx infiltration 0.033 Ωcm2 at 800°C in air.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

25-30

Citation:

E. Y. Pikalova et al., "Electrical and Electrochemical Properties of La2xCaxNiO4 and La2xCaxNiO4–Ce0.8Sm0.2O1.9 Cathode Materials for Intermediate Temperature SOFCs", Advances in Science and Technology, Vol. 93, pp. 25-30, 2014

Online since:

October 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] A.J. Jacobson, Materials for solid oxide fuel fells, Chem. Mater. 22 (2010) 660-674.

[2] A.Y. Yan, M.J. Cheng, Y.L. Dong, W.S. Yang, V. Maragou, S. Song, P. Tsiakaras, Investigation of a Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance, Applied Cat. B: Environmental 66 (2006) 64-71.

DOI: https://doi.org/10.1016/j.apcatb.2006.02.021

[3] Z. Yáng, A.S. Harvey, L.J. Gauckler, Influence of CO2 on Ba0. 2Sr0. 8Co0. 8Fe0. 2O3−δ at elevated temperatures, Scripta Mater. 61 (2009) 1083-1086.

[4] C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem. 14 (2010) 1125-1144.

DOI: https://doi.org/10.1007/s10008-009-0932-0

[5] A. Orera, P.R. Slater, New chemical systems for Solid Oxide Fuel Cells, Chem. Mat. 22 (2010) 675-690.

[6] E. Boehm, J. -M. Bassat, P. Dordor, F. Mauvy, J.C. Grenier, Ph. Stevens, Oxygen diffusion and transport properties in non-stoichiometric Ln2–xNiO4+δ oxides, Solid State Ionics 176 (2005) 2717-2725.

DOI: https://doi.org/10.1016/j.ssi.2005.06.033

[7] C. Lalanne Synthese et mise en forme de nouveaux materiaux de cathode pour piles ITSOFC: realization et tests de cellules. L'universite Bordeaux 1, Ecole Doctorale des Sciences Chemiques, France, (2005).

[8] S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La2–xSrxNiO4+δ, Solid State Ionics 135 (2000) 709-712.

DOI: https://doi.org/10.1016/s0167-2738(00)00388-x

[9] K. Ruck, G. Krabbes, I. Vogel, Structural and electrical properties of La2–xCахNiO4+δ (0 < x < 0. 4) with regard to the oxygen content, Mater. Res. Bull. 34 (1999) 1689-1697.

DOI: https://doi.org/10.1016/s0025-5408(99)00163-4

[10] Y. Shen, H. Zhao, X. Liua, N. Xua Preparation and electrical properties of Ca-doped La2NiO4+δ cathode materials for IT-SOFC. Phys. Chem. Chem. Phys. 12 (2010) 15124-15131.

DOI: https://doi.org/10.1039/c0cp00261e

[11] J.P. Tang, R.I. Dass, A. Manthiram, Comparison of the crystal chemistry and electrical properties of La2–xAxNiO4 (A = Ca, Sr and Ba), Mater. Res. Bull. 35 (2000) 411-424.

DOI: https://doi.org/10.1016/s0025-5408(00)00234-8

[12] K. Zhao, Q. Xu, D.P. Huang, M. Chen, B. -H. Kim, Electrochemical evaluation of La2NiO4+δ-based composite electrodes screen printed on Ce0. 8Sm0. 2O1. 9 electrolyte, J. Solid State Electrochem. 16 (2012) 2797-2804.

DOI: https://doi.org/10.1007/s10008-012-1702-y

[13] D. Pérez-Coll, A. Aguadero, M.J. Escudero, P. Núñez, L. Daza, Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1–xSmxO2–δ electrolyte system, J. Power Sources 178 (2008) 151-162.

DOI: https://doi.org/10.1016/j.jpowsour.2007.12.030

[14] D. Pérez-Coll, A. Aguadero, Effect of DC current polarization on the electrochemical behaviour of La2NiO4+δ and La3Ni2O7+δ, J. Power Sources 192 (2009) 2-13.

DOI: https://doi.org/10.1016/j.jpowsour.2008.10.073

[15] N. Bogdanovich, V. Gorelov, V. Balakireva, T. Dem'yanenko, Effect of copper on solid electrolytes (Ce0. 8Sm0. 2)1–xCuxO2–δ and composite cathodes based on La0. 8Sr0. 2MnO3, Russ. J. Electrochem. 41 (2005) 576-581.

DOI: https://doi.org/10.1007/s11175-005-0109-9

[16] N.M. Bogdanovich, D.I. Bronin, G.K. Vdovin, I. Yu. Yaroslavtsev, B.L. Kuzin, Effect of Bi0. 75Y0. 25O1. 5 electrolyte additive in collector layer to properties of bilayer composite cathodes of solid oxide fuel cells based on La(Sr)MnO3 and La(Sr)Fe(Co)O3 compound, Russ. J. Electrochem. 45 (2009).

DOI: https://doi.org/10.1134/s1023193509040168

[17] B.L. Kuzin, N.M. Bogdanovich, D.I. Bronin, I. Yu. Yaroslavtsev, G.K. Vdovin, Yu.A. Kotov, A.V. Bagazeev, A.I. Medvedev, A.M. Murzakaev, O.P. Timoshenkova, A.K. Stol'ts, Electrochemical properties of cathodes made of (La, Sr)(Fe, Co)O3 containing admixtures of nanoparticles of cupric oxide and intended for fuel cells with a solid electrolyte based on ceric oxide, Russ. J. Electrochem. 43 (2007).

DOI: https://doi.org/10.1134/s1023193507080101

[18] J.Y. Chen, J. Rebello, V. Vashook, D.M. Trots, S.R. Wang, T.L. Wen, J. Zosel, U. Guth, Thermal stability, oxygen non-stoichiometry and transport properties of LaNi0. 6Fe0. 4O3, Solid State Ionics 192 (2011) 424-430.

DOI: https://doi.org/10.1016/j.ssi.2010.04.019

[19] I. Yu. Yaroslavtsev, B.L. Kuzin, D.I. Bronin, G.K. Vdovin, N.M. Bogdanovich, Cathodes based on (La, Sr)MnO3 modified with PrO2-x, Rus. J. Elecrochem. 45 (2009) 875-880.

DOI: https://doi.org/10.1134/s1023193509080060