Macromolecular Crowding: The Next Frontier in Tissue Engineering


Article Preview

Tissue engineering by self-assembly hypothesises that optimal repair and regeneration can be achieved best by using the cells’ inherent ability to create organs with proficiency still unmatched by currently available scaffold fabrication technologies. However, the prolonged culture time required to develop an implantable device jeopardises clinical translation and commercialisation of such techniques. Herein, we report that macromolecular crowding, a biophysical in vitro microenvironment modulator, dramatically accelerates extracellular matrix deposition in cultured human corneal, lung and dermal fibroblasts and human bone marrow mesenchymal stem cells. In fact, an almost 5 to 30 fold increase in collagen type I deposition was recorded as early as 48 hours in culture, without any negative effect in cell phenotype and function.



Edited by:

Pietro Vincenzini






P. Kumar et al., "Macromolecular Crowding: The Next Frontier in Tissue Engineering", Advances in Science and Technology, Vol. 96, pp. 1-8, 2014

Online since:

October 2014




* - Corresponding Author

[1] S. Janssens, C. Dubois, J. Bogaert, K. Theunissen, C. Deroose, W. Desmet, M. Kalantzi, L. Herbots, P. Sinnaeve, J. Dens, J. Maertens, F. Rademakers, S. Dymarkowski, O. Gheysens, J. Van Cleemput, G. Bormans, J. Nuyts, A. Belmans, L. Mortelmans, M. Boogaerts, F. Van De Werf, Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial, Lancet 367 (2006).

DOI: 10.1016/s0140-6736(05)67861-0

[2] M. Yamato, M. Utsumi, A. Kushida, C. Konno, A. Kikuchi, T. Okano, Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature, Tissue Eng. 7 (2001) 473-480.

DOI: 10.1089/10763270152436517

[3] H. Green, O. Kehinde, J. Thomas, Growth of cultured human epidermal cells into multiple epithelia suitable for grafting, Proc. Natl. Acad. Sci. U. S. A. 76 (1979) 5665-5668.

DOI: 10.1073/pnas.76.11.5665

[4] N. L'Heureux, T.N. McAllister, L.M. de la Fuente, Tissue-engineered blood vessel for adult arterial revascularization, N. Engl. J. Med. 357 (2007) 1451-1453.

DOI: 10.1056/nejmc071536

[5] S. Proulx, J.D. Uwamaliya, P. Carrier, A. Deschambeault, C. Audet, C.J. Giasson, S.L. Guérin, F.A. Auger, L. Germain, Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types, Mol. Vis. 16 (2010).

DOI: 10.1089/ten.tea.2008.0208

[6] K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium, N. Engl. J. Med. 351 (2004).

DOI: 10.1056/nejmoa040455

[7] N. L'Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T.N. Wight, N.A.F. Chronos, A.E. Kyles, C.R. Gregory, G. Hoyt, R.C. Robbins, T.N. McAllister, Human tissue-engineered blood vessels for adult arterial revascularization, Nat. Med. 12 (2006).

DOI: 10.1038/nm1364

[8] C. Chen, F. Loe, A. Blocki, Y. Peng, M. Raghunath, Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies, Adv. Drug Deliv. Rev. 63 (2011) 277-290.

DOI: 10.1016/j.addr.2011.03.003

[9] S.B. Zimmerman, A.P. Minton, Macromolecular crowding: Biochemical, biophysical, and physiological consequences, Annu. Rev. Biophys. Biomol. Struct. 22 (1993) 27-65.

DOI: 10.1146/

[10] B. Van Den Berg, R.J. Ellis, C.M. Dobson, Effects of macromolecular crowding on protein folding and aggregation, EMBO J. 18 (1999) 6927-6933.

DOI: 10.1093/emboj/18.24.6927

[11] G.B. Ralston, Effects of crowding, in protein solutions, J. Chem. Educ., 67 (1990) 857-860.

[12] R.J. Ellis, Macromolecular crowding: Obvious but underappreciated, Trends Biochem. Sci. 26 (2001) 597-604.

DOI: 10.1016/s0968-0004(01)01938-7

[13] D. Cigognini, A. Lomas, P. Kumar, A. Satyam, A. English, A. Azeem, A. Pandit, D. Zeugolis, Engineering in vitro microenvironments for cell based therapies and drug discovery, Drug Discov. Today. 18 (2013) 1099-1108.

DOI: 10.1016/j.drudis.2013.06.007

[14] A.S. Zeiger, F.C. Loe, R. Li, M. Raghunath, K.J. Van Vliet, Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior, PLoS One 7 (2012) e37904.

DOI: 10.1371/journal.pone.0037904

[15] A. Satyam, P. Kumar, X. Fan, A. Gorelov, Y. Rochev, L. Joshi, H. Peinado, D. Lyden, B. Thomas, B. Rodriguez, M. Raghunath, A. Pandit, D. Zeugolis, Macromolecular crowding meets tissue engineering by self-assembly: A paradigm shift in regenerative medicine, Adv. Mater. (In Press DOI: 10. 1002/adma. 201304428).

DOI: 10.1002/adma.201304428

[16] B. Chen, B. Wang, W.J. Zhang, G. Zhou, Y. Cao, W. Liu, Macromolecular crowding effect on cartilaginous matrix production: A comparison of two-dimensional and three-dimensional models, Tissue Eng. Part C Methods 19 (2013) 586-595.

DOI: 10.1089/ten.tec.2012.0408

[17] R.R. Lareu, I. Arsianti, H.K. Subramhanya, P. Yanxian, M. Raghunath, In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: A preliminary study, Tissue Eng. 13 (2007) 385-391.

DOI: 10.1089/ten.2006.0224

[18] Y. Peng, M.T. Bocker, J. Holm, W.S. Toh, C.S. Hughes, F. Kidwai, G.A. Lajoie, T. Cao, F. Lyko, M. Raghunath, Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells, J. Tissue Eng. Regen. Med. 6 (2012).

DOI: 10.1002/term.1560

[19] C.Z.C. Chen, Y.X. Peng, Z.B. Wang, P.V. Fish, J.L. Kaar, R.R. Koepsel, A.J. Russell, R.R. Lareu, M. Raghunath, The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well, Br. J. Pharmacol. 158 (2009).

DOI: 10.1111/j.1476-5381.2009.00387.x

[20] X. Ang, M. Lee, A. Blocki, C. Chen, L. Ong, H. Asada, A. Sheppard, M. Raghunath, Macromolecular crowding amplifies adipogenesis of human bone marrow-derived MSCs by enhancing the pro-adipogenic microenvironment, Tissue Eng. Part A 20 (2013).

DOI: 10.1089/ten.tea.2013.0337

[21] D. Zeugolis, A. Satyam, Engineered living tissue substitute, WO Patent 2, 012, 168, 465. (2012).

[22] J. Torbet, M. Malbouyres, N. Builles, V. Justin, M. Roulet, O. Damour, A. Oldberg, F. Ruggiero, D.J.S. Hulmes, Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction, Biomaterials 28 (2007) 4268-4276.

DOI: 10.1016/j.biomaterials.2007.05.024

[23] N. Builles, N. Bechetoille, V. Justin, A. Ducerf, C. Auxenfans, C. Burillon, M. Sergent, O. Damour, Development of an optimised culture medium for keratocytes in monolayer, Biomed. Mater. Eng. 16 (2006) S95-S104.

[24] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy 8 (2006).

DOI: 10.1080/14653240600855905

[25] J.J. Rice, M.M. Martino, L.D. Laporte, F. Tortelli, P.S. Briquez, J.A. Hubbell, Engineering the regenerative microenvironment with biomaterials, Adv. Healthc. Mater. 2 (2013) 57-71.

DOI: 10.1002/adhm.201200197

[26] O. Guillame-Gentil, O. Semenov, A. Roca, T. Groth, R. Zahn, J. Vörös, M. Zenobi-Wong, Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures, Adv. Mater. 22 (2010) 5443-5462.

DOI: 10.1002/adma.201001747

[27] F. Edalat, H. Bae, S. Manoucheri, J. Cha, A. Khademhosseini, Engineering approaches toward deconstructing and controlling the stem cell environment, Ann. Biomed. Eng. 40 (2012) 1301-1315.

DOI: 10.1007/s10439-011-0452-9

In order to see related information, you need to Login.