Effect of Titanium Dioxide Nanoparticles on Mechanical and Thermal Properties of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends

Abstract:

Article Preview

Poly (lactic acid) (PLA) blended with poly (butylene succinate) (PBS) were prepared by using twin screw extruder and injection molding machine at various contents of PBS from 0-15 wt%. The surface of titanium dioxide (TiO2) nanoparticles was treated using aminopropyl trimethoxy silane (ATS) order to disperse them into the biopolymer blends. The mechanical and thermal properties of PLA/PBS/TiO2 nanocomposites were investigated over a range of filler content 0-5 wt%. All samples with a wide range of TiO2 addition exhibit the translucency. The surface morphology showed that the addition of PBS at 10 wt% was miscible with PLA while the other contents of PBS exhibited phase separation in the blends. Additionally, a uniform dispersion of filler in the matrix existed when the nanoparticles content was less than 3 wt%. The surface treated nanoparticles played an important role in mechanical and thermal properties of the nanocomposites because of its well dispersion and strong interfacial interaction between the nanoparticles and PLA/PBS matrix.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

33-38

DOI:

10.4028/www.scientific.net/AST.96.33

Citation:

A. Buasri et al., "Effect of Titanium Dioxide Nanoparticles on Mechanical and Thermal Properties of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends", Advances in Science and Technology, Vol. 96, pp. 33-38, 2014

Online since:

October 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Shibata, Y. Inoue, M. Miyoshi, Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate), Polymer 47 (2006) 3557-3564.

DOI: 10.1016/j.polymer.2006.03.065

[2] M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, H. Fukuda, Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent, J. Appl. Polym. Sci. 106 (2007).

DOI: 10.1002/app.26717

[3] J.W. Park, S.S. Im, Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate), J. Appl. Polym. Sci. 86 (2002) 647-655.

DOI: 10.1002/app.10923

[4] J.G. Zeikus, M.K. Jain, P. Elankovan, Biotechnology of succinic acid production and markets for derived industrial products, Appl. Microbiol. Biotechnol. 51 (1999) 545-552.

DOI: 10.1007/s002530051431

[5] A. Buasri, N. Chaiyut, V. Loryuenyong, M. Worachat, R. Kanchanapradit, S. Baibou, Effect of TiO2 nanoparticles on tensile and photodegradation behavior of biopolymer films based on poly(butylene succinate), Appl. Mech. Mater. 376 (2013) 89-92.

DOI: 10.4028/www.scientific.net/amm.376.89

[6] G. Dorez, A. Taguet, L. Ferry, J.M. Lopez-Cuesta, Thermal and fire behavior of natural fibers/PBS biocomposites, Polym. Degrad. Stabil. 98 (2013) 87-95.

DOI: 10.1016/j.polymdegradstab.2012.10.026

[7] C.M. Close, A.B. Godfrey, S.R. Thomson, Titanium dioxide made the EDO way should see drop, Met. Powder Rep. 60 (2005) 20-25.

DOI: 10.1016/s0026-0657(05)70451-3

[8] Y. Tong, Y. Li, F. Xie, M. Ding, Preparation and characteristics of polyimide-TiO2 nanocomposite film, Polym. Int. 49 (2000) 1543-1547.

DOI: 10.1002/1097-0126(200011)49:11<1543::aid-pi535>3.0.co;2-b

[9] V.G. Nguyen, H. Thai, D.H. Mai, H.T. Tran, D.L. Tran, M.T. Vu, Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites, Compos. Part B: Eng. 45 (2013) 1192-1198.

DOI: 10.1016/j.compositesb.2012.09.058

[10] G.X. Chen, H.S. Kim, E.S. Kim, J.S. Yoon, Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends, Polymer 46 (2005) 11829-11836.

DOI: 10.1016/j.polymer.2005.10.056

[11] G. Wang, G. Chen, Z. Wei, T. Yu, L. Liu, P. Wang, Y. Chang, M. Qi, A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(ε-caprolactone) nanocomposites, J. Appl. Polym. Sci. 125 (2012).

DOI: 10.1002/app.36720

[12] F.Z. Arrakhiz, M.E. Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, A. Qaiss, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene, Mater. Design 43 (2013).

DOI: 10.1016/j.matdes.2012.06.056

[13] L. Jompang, S. Thumsorn, J. Wong On, P. Surin, C. Apawet, T. Chaichalermwong, N. Kaabbuathong, N. O-Charoen, N. Srisawat, Poly(lactic acid) and poly(butylene succinate) blend fibers prepared by melt spinning technique, Energy Procedia 34 (2013).

DOI: 10.1016/j.egypro.2013.06.777

[14] A. Buasri, N. Chaiyut, C. Kritsanakun, C. Phatkun, T. Khunsri, Preparation and properties of nanocomposites based on poly (lactic acid) and modified TiO2, Adv. Mat. Res. 463-464 (2012) 519-522.

DOI: 10.4028/www.scientific.net/amr.463-464.519

[15] A. Buasri, N. Chaiyut, V. Loryuenyong, N. Jaritkaun, T. Yavilas, N. Yoorengdech, Mechanical and thermal properties of silk fiber reinforced poly(lactic acid) biocomposites, Optoelectron. Adv. Mater. - Rapid Comm. 7 (2013) 938-942.

[16] J. Li, X. Luo, X. Lin, Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites, Materials and Design 46 (2013) 902-909.

DOI: 10.1016/j.matdes.2012.11.054

In order to see related information, you need to Login.