Effect of Titanium Dioxide Nanoparticles on Mechanical and Thermal Properties of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends


Article Preview

Poly (lactic acid) (PLA) blended with poly (butylene succinate) (PBS) were prepared by using twin screw extruder and injection molding machine at various contents of PBS from 0-15 wt%. The surface of titanium dioxide (TiO2) nanoparticles was treated using aminopropyl trimethoxy silane (ATS) order to disperse them into the biopolymer blends. The mechanical and thermal properties of PLA/PBS/TiO2 nanocomposites were investigated over a range of filler content 0-5 wt%. All samples with a wide range of TiO2 addition exhibit the translucency. The surface morphology showed that the addition of PBS at 10 wt% was miscible with PLA while the other contents of PBS exhibited phase separation in the blends. Additionally, a uniform dispersion of filler in the matrix existed when the nanoparticles content was less than 3 wt%. The surface treated nanoparticles played an important role in mechanical and thermal properties of the nanocomposites because of its well dispersion and strong interfacial interaction between the nanoparticles and PLA/PBS matrix.



Edited by:

Pietro Vincenzini




A. Buasri et al., "Effect of Titanium Dioxide Nanoparticles on Mechanical and Thermal Properties of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends", Advances in Science and Technology, Vol. 96, pp. 33-38, 2014

Online since:

October 2014




* - Corresponding Author

[1] M. Shibata, Y. Inoue, M. Miyoshi, Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate), Polymer 47 (2006) 3557-3564.

DOI: https://doi.org/10.1016/j.polymer.2006.03.065

[2] M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, H. Fukuda, Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent, J. Appl. Polym. Sci. 106 (2007).

DOI: https://doi.org/10.1002/app.26717

[3] J.W. Park, S.S. Im, Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate), J. Appl. Polym. Sci. 86 (2002) 647-655.

DOI: https://doi.org/10.1002/app.10923

[4] J.G. Zeikus, M.K. Jain, P. Elankovan, Biotechnology of succinic acid production and markets for derived industrial products, Appl. Microbiol. Biotechnol. 51 (1999) 545-552.

DOI: https://doi.org/10.1007/s002530051431

[5] A. Buasri, N. Chaiyut, V. Loryuenyong, M. Worachat, R. Kanchanapradit, S. Baibou, Effect of TiO2 nanoparticles on tensile and photodegradation behavior of biopolymer films based on poly(butylene succinate), Appl. Mech. Mater. 376 (2013) 89-92.

DOI: https://doi.org/10.4028/www.scientific.net/amm.376.89

[6] G. Dorez, A. Taguet, L. Ferry, J.M. Lopez-Cuesta, Thermal and fire behavior of natural fibers/PBS biocomposites, Polym. Degrad. Stabil. 98 (2013) 87-95.

DOI: https://doi.org/10.1016/j.polymdegradstab.2012.10.026

[7] C.M. Close, A.B. Godfrey, S.R. Thomson, Titanium dioxide made the EDO way should see drop, Met. Powder Rep. 60 (2005) 20-25.

DOI: https://doi.org/10.1016/s0026-0657(05)70451-3

[8] Y. Tong, Y. Li, F. Xie, M. Ding, Preparation and characteristics of polyimide-TiO2 nanocomposite film, Polym. Int. 49 (2000) 1543-1547.

DOI: https://doi.org/10.1002/1097-0126(200011)49:11<1543::aid-pi535>3.0.co;2-b

[9] V.G. Nguyen, H. Thai, D.H. Mai, H.T. Tran, D.L. Tran, M.T. Vu, Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites, Compos. Part B: Eng. 45 (2013) 1192-1198.

DOI: https://doi.org/10.1016/j.compositesb.2012.09.058

[10] G.X. Chen, H.S. Kim, E.S. Kim, J.S. Yoon, Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends, Polymer 46 (2005) 11829-11836.

DOI: https://doi.org/10.1016/j.polymer.2005.10.056

[11] G. Wang, G. Chen, Z. Wei, T. Yu, L. Liu, P. Wang, Y. Chang, M. Qi, A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(ε-caprolactone) nanocomposites, J. Appl. Polym. Sci. 125 (2012).

DOI: https://doi.org/10.1002/app.36720

[12] F.Z. Arrakhiz, M.E. Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, A. Qaiss, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene, Mater. Design 43 (2013).

DOI: https://doi.org/10.1016/j.matdes.2012.06.056

[13] L. Jompang, S. Thumsorn, J. Wong On, P. Surin, C. Apawet, T. Chaichalermwong, N. Kaabbuathong, N. O-Charoen, N. Srisawat, Poly(lactic acid) and poly(butylene succinate) blend fibers prepared by melt spinning technique, Energy Procedia 34 (2013).

DOI: https://doi.org/10.1016/j.egypro.2013.06.777

[14] A. Buasri, N. Chaiyut, C. Kritsanakun, C. Phatkun, T. Khunsri, Preparation and properties of nanocomposites based on poly (lactic acid) and modified TiO2, Adv. Mat. Res. 463-464 (2012) 519-522.

DOI: https://doi.org/10.4028/www.scientific.net/amr.463-464.519

[15] A. Buasri, N. Chaiyut, V. Loryuenyong, N. Jaritkaun, T. Yavilas, N. Yoorengdech, Mechanical and thermal properties of silk fiber reinforced poly(lactic acid) biocomposites, Optoelectron. Adv. Mater. - Rapid Comm. 7 (2013) 938-942.

[16] J. Li, X. Luo, X. Lin, Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites, Materials and Design 46 (2013) 902-909.

DOI: https://doi.org/10.1016/j.matdes.2012.11.054