Electrochemical Detection of Bacteria Using Graphene Oxide Electrodeposited on Titanium Implants


Article Preview

Graphene oxide was electrodeposited on titanium (Ti-GO) and anodized titanium (ATi-GO) as label-free sensors for the detection of challenging living organisms, specifically Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The graphene modification contributed to two sets of oxidation-reduction peaks in cyclic voltammograms (CVs) of bacteria growth on the electrode surfaces (ATi-GO) that resulted in increasing direct electron transfer and stimulating excretion of mediating molecules for higher electron transfer between electrodes and bacteria. Additionally, similar wave patterns of CVs were found when E. coli or S. aureus were grown and electrocatalyzed on ATi-GO. The results suggest that bacteria on titanium implant surfaces could be easily detected by using mediatorless ATi-GO sensors electrochemically. These finding open another interesting method in using ATi-GO as in situ electrochemical sensors for label-free, close to real-time detection of bacteria infection in orthopedic implants.



Edited by:

Pietro Vincenzini




S. Sirivisoot et al., "Electrochemical Detection of Bacteria Using Graphene Oxide Electrodeposited on Titanium Implants", Advances in Science and Technology, Vol. 96, pp. 45-53, 2014

Online since:

October 2014




* - Corresponding Author

[1] R. O. Darouiche, Treatment of infections associated with surgical implants, N. Engl. J. Med. 350 (2004) 1422-1429.

[2] T. F. Moriarty, U. Schlegel, S. Perren, and R. G. Richards, Infection in fracture fixation: can we influence infection rates through implant design?, J. Mater. Sci. Mater. Med. 21 (2010) 1031-1035.

DOI: https://doi.org/10.1007/s10856-009-3907-x

[3] M. Ribeiro, F. J. Monteiro, and M. P. Ferraz, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions, Biomatter. 2 (2012) 176-194.

DOI: https://doi.org/10.4161/biom.22905

[4] P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich, PCR detection of bacteria in seven minutes, Science. 284 (1999) 449-450.

[5] B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, Single cell detection with micromechanical oscillators, J. Vac. Sci. Tech. B. 19 (2001) 2825-2828.

DOI: https://doi.org/10.1116/1.1421572

[6] S. Liébana, A. Lermo, S. Campoy, M. P. Cortés, S. Alegret, and M. I. Pividori, Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing, Biosens. Bioelectron. 25 (2009) 510-513.

DOI: https://doi.org/10.1016/j.bios.2009.07.022

[7] P. Panizzi, M. Nahrendorf, J. -L. Figueiredo, J. Panizzi, B. Marinelli, Y. Iwamoto, E. Keliher, A. A. Maddur, P. Waterman, H. K. Kroh, F. Leuschner, E. Aikawa, F. K. Swirski, M. J. Pittet, T. M. Hackeng, P. Fuentes-Prior, O. Schneewind, P. E. Bock , and R. Weissleder, In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation, Nat. Med. 17 (2011).

DOI: https://doi.org/10.1038/nm.2423

[8] C. L. Pierce, C. L. Rees, F. M. Fernandez, and J. R. Barr, Detection of Staphylococcus aureus using 15N-labeled bacteriophage amplification coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, Anal. Chem. 83 (2011).

DOI: https://doi.org/10.1021/ac103024m

[9] L. Su, W. Jia, C. Hou, and Y. Lei, Microbial biosensors: A review, Biosens. Bioelectron. 26 (2011) 1788-1799.

[10] A. A. Carmona-Martinez, F. Harnisch, L. A. Fitzgerald, J. C. Biffinger, B. R. Ringeisen, and U. Schröder, Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants, Bioelectrochemistry. 81 (2011).

DOI: https://doi.org/10.1016/j.bioelechem.2011.02.006

[11] C. W. Marshall and H. D. May, Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica, Energy Environ. Sci. 2 (2009) 699-705.

DOI: https://doi.org/10.1039/b823237g

[12] Y. Chalenko, V. Shumyantseva, S. Ermolaeva, and A. Archakov, Electrochemistry of Escherichia coli JM109: Direct electron transfer and antibiotic resistance, Biosens. Bioelectron. 32 (2012) 219-223.

DOI: https://doi.org/10.1016/j.bios.2011.12.015

[13] K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol. 70 (2004) 5373-5382.

DOI: https://doi.org/10.1128/aem.70.9.5373-5382.2004

[14] Z. Wang, J. Zhang, P. Chen, X. Zhou, Y. Yang, S. Wu, L. Niu, Y. Han, L. Wang, F. Boey, Q. Zhang, B. Liedberg, and H. Zhang, Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes, Biosens. Bioelectron. 26 (2011).

DOI: https://doi.org/10.1016/j.bios.2011.03.002

[15] R. S. Hartshorne, C. L. Reardon, D. Ross, J. Nuester, T. A. Clarke, A. J. Gates, P. C. Mills, J. K. Fredrickson, J. M. Zachara, L. Shi, A. S. Beliaev, M. J. Marshall, M. Tien, S. Brantley, J. N. Butt, and D. J. Richardson, Characterization of an electron conduit between bacteria and the extracellular environment, Proc. Natl. Acad. Sci. U.S.A.: published ahead of print December 17 (2009).

DOI: https://doi.org/10.1073/pnas.0900086106

[16] J. Hass, W. A. d. Heer, and E. H. Conrad, The growth and morphology of epitaxial multilayer graphene, J. Phys.: Condens. Matter. 20 (2008) 323202.

DOI: https://doi.org/10.1088/0953-8984/20/32/323202

[17] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. V. Saraf, D. Hu, J. Zhang, G. L. Graff, J. Liu, M. A. Pope, and I. A. Aksay, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano. 4 (2010).

DOI: https://doi.org/10.1021/nn901819n

[18] B. Seger and P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C. 113 (2009) 7990-7995.

DOI: https://doi.org/10.1021/jp900360k

[19] F. Liu, K. Choi, T. Park, S. Lee, and T. Seo, Graphene-based electrochemical biosensor for pathogenic virus detection, BioChip J. 5 (2011) 123-128.

DOI: https://doi.org/10.1007/s13206-011-5204-2

[20] H. N. Abdelhamid and H. -F. Wu, Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria, J. Mater. Chem. B. 1 (2013) 3950-3961.

DOI: https://doi.org/10.1039/c3tb20413h

[21] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: https://doi.org/10.1002/adma.201001068

[22] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis. 22 (2010) 1027-1036.

DOI: https://doi.org/10.1002/elan.200900571

[23] S. Alwarappan, A. Erdem, C. Liu, and C. -Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications, J. Phys. Chem. C. 113 (2009) 8853-8857.

DOI: https://doi.org/10.1021/jp9010313

[24] Y. Parcharoen, P. Termsuksawad, and S. Sirivisoot, Electrochemical deposition of novel graphene oxide-hydroxyapatite composite onto titanium dioxide nanotubes for orthopaedic applications, in International Conference on Advances in science and Technology, Pattaya, Thailand (2014).

[25] Y. Parcharoen, P. Termsuksawad, and S. Sirivisoot, A deposition of novel graphene oxide-hydroxyapatite composite onto titanium dioxide nanotubes as an antibacterial implant material, in The 2nd ASEAN Plus Three Graudate Research Congress (2nd AGRC), Bangkok, Thailand (2014).

[26] S. Sirinrath and J. W. Thomas, Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation, Nanotechnology. 19 (2008) 295101.

DOI: https://doi.org/10.1088/0957-4484/19/29/295101

[27] J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, and C. M. Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresour. Technol. 114 (2012) 275-280.

DOI: https://doi.org/10.1016/j.biortech.2012.02.116

[28] Y. Qiao, C. M. Li, S. -J. Bao, Z. Lu, and Y. Hong, Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells, Chem. Commun. (2008) 1290-1292.

DOI: https://doi.org/10.1039/b719955d

[29] C. Punckt, M. A. Pope, J. Liu, Y. Lin, and I. A. Aksay, Electrochemical performance of graphene as effected by electrode porosity and graphene functionalization, Electroanalysis. 22 (2010) 2834-2841.

DOI: https://doi.org/10.1002/elan.201000367

[30] S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, ACS Nano. 5 (2011) 6971-6980.

DOI: https://doi.org/10.1021/nn202451x