The Magnetic States of Co- and Cr-Doped Ni-Mn-(In, Sn) Heusler Alloys

Abstract:

Article Preview

In this paper we report on the equilibrium magnetic and structural reference states of complex Cr doped Ni-Co-Mn-(In, Sn) Heusler alloys, which are studied from first-principles within the density functional theory. The off-stoichiometric compositions were treated by using the supercell approach. Three different ferrimagnetic and one ferromagnetic spin configurations were considered. The results of energy relaxation calculations have been averaged over different atomic distributions. It is found that Ni14Co2Mn11Cr1(In, Sn)4 the ferromagnetic (a ferrimagnetic) spin configuration in austenite (martensite) is energetically stable, respectively.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

119-123

Citation:

V. D. Buchelnikov et al., "The Magnetic States of Co- and Cr-Doped Ni-Mn-(In, Sn) Heusler Alloys", Advances in Science and Technology, Vol. 97, pp. 119-123, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] R. Das, S. Sarma, A. Perumal, and A. Srinivasan, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J. Appl. Phys., 109 (2011) 7A901.

[2] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nature Mater., 11 (2012) 620-626.

DOI: https://doi.org/10.1038/nmat3334

[3] D.Y. Cong, S. Roth, and L. Schultz, Magnetic properties and structural transformations in Ni-CoMn-Sn multifunctional alloys, Acta Mater., 60 (2012) 5335-5351.

DOI: https://doi.org/10.1016/j.actamat.2012.06.034

[4] S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, F. Albertini, Co and In Doped Ni-Mn-Ga Magnetic Shape Memory Alloys: A Thorough Structural, Magnetic and Magnetocaloric Study, Entropy, 16 (2014) 2204-2222.

DOI: https://doi.org/10.3390/e16042204

[5] T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Large reversible magnetocaloric effect in Ni-Mn-In-Co, Appl. Phys. Lett., 106 (2015) 021901.

DOI: https://doi.org/10.1063/1.4905371

[6] V.V. Sokolovskiy, M.A. Zagrebin, V.D. Buchelnikov, Novel achievements in the research field of multifunctional shape memory Ni-Mn-In and Ni-Mn-In-Z Heusler alloys, in: N. Resnina and V. Rubanik (Eds. ), Shape Memory Alloys: Properties, Technologies, Opportunities, volumes 81-82 of Materials Science Foundations, chapter, 2, Trans Tech Publications Inc. (2015).

DOI: https://doi.org/10.4028/www.scientific.net/msfo.81-82.38

[7] A. Planes, L. Mañosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, J. Phys.: Condens. Matter., 30 (2009) 233201.

DOI: https://doi.org/10.1088/0953-8984/21/23/233201

[8] D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Fähler, and P. Entel, First-principles calculation of the instability leading to giant inverse magnetocaloric effects, Phys. Rev. B, 89 (2014).

DOI: https://doi.org/10.1103/physrevb.89.184403

[9] V.D. Buchelnikov, V.V. Sokolovskiy, M.E. Gruner, P. Entel, Magnetic states of the Ni1. 75Co0. 25Mn1. 25Cr0. 25In0. 5 Heusler alloy, IEEE Trans. Magn., 51 (2015) 7115157.

[10] V.V. Sokolovskiy, P. Entel, V.D. Buchelnikov, M.E. Gruner, Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: Predictions from first-principles and Monte Carlo studies, Phys. Rev. B, 91 (2015) 220409(R).

DOI: https://doi.org/10.1103/physrevb.91.220409

[11] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996) 11169.

DOI: https://doi.org/10.1103/physrevb.54.11169

[12] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (1999) 1758.

DOI: https://doi.org/10.1103/physrevb.59.1758

[13] 3. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50 (1994) 17953.

[14] J.P. Perdew, K. Burke and M. Enzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1996) 3865.

DOI: https://doi.org/10.1103/physrevlett.77.3865

[15] H. J. Monkhorst and J. D. Pack, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 13 (1976) 5188.

[16] Quantum ESPRESSO package Version 5. 02 at http: /www. pwscf. org.