Elastomer Transducers

Abstract:

Article Preview

Electroactive polymer transducers have many features that are desirable for various devices. An especially attractive type of electroactive polymer is dielectric elastomer (DE). Our recent progress is a DE actuator having only 0.1 g of DE that lifted a weight of 2 kg using carbon system electrodes. We also developed a ribbon form DE actuator having a sensor function that can be used to measure force, or pressure, as well as motion at the same time. This actuator can assist human and robot motions. At the same time, it can work as a motion feedback sensor. We hope that it may be useful for smart rehabilitation equipment for hands, legs, and fingers. DE has also been shown to operate in reverse as a generator. Experiments have been performed on portable DE generators/wearable generators powered by human motion, ocean wave power harvesters mounted on buoys, solar heat generators, and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of DE. We are developing elastomers having larger dielectric constant using barium titanium oxide to produce a “super artificial muscle for energy harvesting devices, actuators & sensors” in the near future.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

61-74

Citation:

S. A. Chiba et al., "Elastomer Transducers", Advances in Science and Technology, Vol. 97, pp. 61-74, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] Baughman R, Shacklette L, Elsenbaumer R, Pichta E, and Becht C, 1990 Conducting Polymer Electromechanical Actuators Conjugated Polymeric Materials: Opportunities in Electronics: Optoelectronics and Molecular Electronics eds. J Bredas and R Chiarelli Kluwer Academic pp.559-582.

DOI: https://doi.org/10.1007/978-94-009-2041-5_44

[2] De Rossi D, and Chiarelli P, 1994 Biomimetic Macromolecular Actuators Macro-Ion Characterization: American Chemical Society Symposium Series Vol. 548 Ch. 40 pp.517-530.

DOI: https://doi.org/10.1021/bk-1994-0548.ch040

[3] Oguro K, Kawami Y, and Takenaka H, 1992 Bending of an Ion-conducting Polymer Film-electrode Composite by an Electric Stimulus at Low Voltate J. Micromachine Society Vol. 5 pp.27-30.

[4] Shahinpoor M, 1995 Micro-electro-mechanics of Ionic Polymer Gels as Electrically Controllable Artificial Muscles J. Intelligent Matrial systems and structures Vol. 6 pp.307-314.

DOI: https://doi.org/10.1177/1045389x9500600302

[5] Smela E, Inganas O, and Pei Q, 1993 Electrochemical Muscles: Micromachining Fingers and Corkscrews Advanced Materials Communications Section Vol. 5 No. 9 pp.630-632.

DOI: https://doi.org/10.1002/adma.19930050905

[6] Pei Q, Inganas O, and Lundstrom I, 1993 Bending Layer Strips Build from Polyaniline for Artificial e Electrochemical Muscles Smart Materials and Structures Vol. 2 pp.630-632.

DOI: https://doi.org/10.1088/0964-1726/2/1/001

[7] Pelrine R and Chiba S 1992 Review of Artificial Muscle Approaches (Invited) Proc. Third International Symposium on Micromachine and Human Science (Nagoya, Japan) pp.1-9.

[8] Zhang Q, Bharti V, and Zhao X, 1998 Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-irradiated Poly (Vinylidene Fluoride-trifluoroethylene) Copolymer Science Vol. 32 pp.2101-2104.

DOI: https://doi.org/10.1126/science.280.5372.2101

[9] Zhenyl M, Scheinbeim J, Lee J, and Newman B, 1994 High Field Electrostrictive Response of Polymers Journal of Polymer Science Part B-Polymer physics Vol. 32 pp.2721-2731.

DOI: https://doi.org/10.1002/polb.1994.090321618

[10] Shke Y, and Klingenberg D, 1996 Material Parameters for Electrostriction J. Applied Physics Vol. 80(8) pp.4566-4572.

[11] Furukawa T, and Seo N, 1990 Electrostriction as the Origin of Piezoelectricity in Ferroelectric polymers Japanese J. applied Physics Vol. 29 No. 4 pp.657-680.

DOI: https://doi.org/10.1143/jjap.29.675

[12] Bobbio S, Kellam M, Dudley B, Goodwin S, Johansson, Jones S, Jacobson J, Tranjan F, and Dubois T, 1993 Integrated force arrays Proc., IEEE Micro Electro Mechanical Systems Workshop (Fort Lauderdale, Florida).

DOI: https://doi.org/10.1109/memsys.1993.296931

[13] Pelrine R, Kornbluh R, Pei Q, and Joseph J, 2000 High Speed Electrically Actuated Elastomers with Over 100% Strain Science 287 5454 pp.836-839.

DOI: https://doi.org/10.1126/science.287.5454.836

[14] S. Chiba, MEMS and NEMS Applications of Dielecric Elastomer and Future Trends, Electronic Packaging Technology, Vol. 18, No. 1, pp.32-38, (2002).

[15] S. Chiba, 2014 Soft Actuators: Chapter 13 Dielectric Polymers, ed K. Asaka and H. Okuzali, Springer, ISBN: 978-4-431-54766-2.

[16] Y. Tanaka, N. Tsurumi, K. Okamoto, K. Nagase, S. Chiba, and M. Waki, Demonstration of a robot finger using dielectric elastomer actuator, Abstract of MRS-J, A-4, Yokohama, Japan, (2015).

[17] S. Chiba, M. Waki, 2015, Recent Progress of Dielectric Elastomers, MRS-J Post Symposium, Yokohama, Japan, Dec. (2015).

[18] S. Chiba, M. Waki, T. Sawa, T. Yoshida, R. Kornbluh, and R. Pelrine, 2011 Electroactive Polymer Artificial Muscle Operable in Ultra-High Hydrostatics Pressure Environment IEEE Sensors Journal, Vol. 11, No. 1, pp.3-4, ISJEAZ(ISSN 1530-437X), (2011).

DOI: https://doi.org/10.1109/jsen.2010.2053702

[19] S. Chiba, M. Waki, and T. Wada, Evolving Dielectric Elastomer Artificial Muscles, Petrotech, Vol. 35, No. 7, (2012).

[20] S. Chiba, M. Waki, R. Kormbluh, and R. Pelrine, Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles, Electroactive Polymer Actuators and Devices (EAPAD) 2008, ed. Y. Bar-Cohen, Proc. SPIE. Vol. 6927, 692715 (1-9), (2008).

DOI: https://doi.org/10.1117/12.778345

[21] S. Chiba et. al, Extending Applications of Dielectric Elastomer Artificial Muscle, Proc. , SPIE, San Diego, March 18-22, (2007).

[22] K. Ashida, M. Ichiki, M. Tanaka, and T. Kitahara: Power Generation Using Piezo Element: Energy Conversion Efficiency of Piezo Element, Proc. of JAME annual meeting, pp.139-140, (2000-7).

DOI: https://doi.org/10.1299/jsmemecjo.2000.2.0_139

[23] S. Chiba, H. Prahlad, R. Pelrine, R. Kornbluh, S. Stanford, and J. Eckerle: Electro Power Generation Using Electro Active Polymers (EPAM), Proc., 15th Japan Institute of Energy Conference, pp.297-298, JIE, Kogakuin University, Japan (2006-8).

[24] S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Current and Status and Future Prospects of High Efficient Electric Generators Using EPAM, Proc. of World Hydrogen Technologies Convention-2009, New Delhi, India, August 26-28, (2009).

[25] S. Chiba, M. Waki, T. Wada, Y. Hirakawa, K. Masuda, T. Ikoma, Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators, Applied Energy, Volume 104, April 2013, Pages 497-502, ISSN 0306-2619.

DOI: https://doi.org/10.1016/j.apenergy.2012.10.052

[26] S. Chiba, R. Kornbluh, R. Pelrine, and M. Waki, Low-cost Hydrogen Production From Electroactive Polymer Artificial Muscle Wave Power Generators, Proc. of World Hydrogen Energy Conference 2008, Brisbane, Australia, June 16-20, (2008).

DOI: https://doi.org/10.1117/12.778345

[27] S. Chiba, M. Waki, K. Masuda, T. Ikoma, H. Osawa, Y. Suwa, Innovative Power Generation System for Harvesting Wave Energy, Design for Innovative Value Towards a Sustainable Society, pp.1002-1007, Springer, Netherland, 2012, ISBN 978-94-007-3010-6.

DOI: https://doi.org/10.1007/978-94-007-3010-6_212

[28] S. Chiba, M. Waki, K. Masuda, T. Ikoma, H. Osawa,Y. Suwa, Innovative Wave Power Generator Using Dielectric Elastomers Artificial Muscle, Proc. of World Hydrogen Technologies Convention-2011, Scotland, Sept. (2011).

[29] S. Chiba, M. Waki, T. Wada, Simple Solar Heat Generator Using Dielectric Elastomers, Abstract of MRS-J, A-4, Yokohama, Japan, (2015).

[30] S. Chiba, and M. Waki, Extending Application of Dielectric Elastomer Artificial Muscles to Wireless Communication Systems, Recent Advances in Wireless Communications and Networks, Chapter 20, pp.435-454, InTech, (2011).

DOI: https://doi.org/10.5772/19015

[31] S. Chiba, R. Pelrine, R. Kornbluh, H. Prahlad, S. Stanford, J. Eckerle, New Opportunities in Electric Generation Using Electroactive Polymer Artificial Muscle (EPAM). J. Japan. Inst. Energy, Vol. 86, No. 9, pp.38-42, (2007).

DOI: https://doi.org/10.3775/jie.86.743

[32] S. Chiba, M. Waki, Recent Progress in Dielectric Elastomers (Harvesting Energy Mode and High Efficient Actuation Mode), Clean Tech, Nihon Kogyo Shuppan, Tokyo, Japan, April, (2011).