Glass-Derived Photonic Crystal Structures


Article Preview

In this paper we report on the fabrication and the characterization of colloidal systems considering complementary structures based on responsive artificial opal both in direct and inverse configuration. We will discuss alternative systems such as: (i) chromatic composite structure as chemical sensor based on polystyrene (PS) nanoparticles (NPs) embedded in elastomeric matrix, where the application of specific organic solvents produces a variation of its color; (ii) metallic dielectric structures, where the infiltration of colloidal crystals with metallic nanoparticles permits to modify the optical properties of the common opal and can be usefully exploited as SERS substrates; (iii) inverse silica opal functionalized with fluorescent aptamers in order to develop bio-sensors in dye labelled fluorescence detection scheme.



Edited by:

Pietro Vincenzini




A. Chiappini et al., "Glass-Derived Photonic Crystal Structures", Advances in Science and Technology, Vol. 98, pp. 17-25, 2017

Online since:

October 2016




* - Corresponding Author

[1] E. Yablonovitch and T.J. Gmitter Photonic band structure: The face-centered-cubic case, Physical Review Letters, 63 (1989) 1950-(1953).


[2] S. John Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.


[3] A.C. Arsenault, D.P. Puzzo, I. Manners, and G.A. Ozin Photonic-crystal full-colour displays, Nature Photonics 1 (2007) 468-472.


[4] F. Li, D. P. Josephson, and A. Stein Colloidal as-sembly: The road from particles to colloidal molecules and crystals, Angewandte Chemie, 50 (2011) 360-388.


[5] H. Fudouzi Novel coating method for artificial opal films and its process analysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 311 (2007) 11-15.


[6] L.V. Woodcock Entropy difference between the face-centred cubic and hexagonal close- packed crystal structures, Nature, 385 (1997) 141-143.


[7] A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, Clara M. Gonçalves, and Rui M. Almeida, Design of photonic structures by sol–gel-derived silica nanospheres, J. of Non-Cryst. Solids, 353 (2007).


[8] A. Chiappini, C. Armellini, A. Carpentiero, L. Minati, G.C. Righini, M. Ferrari Solvent sensitive polymer composite structures, Optical Materials 36 (2014) pp.130-134.


[9] S. Guddala, S.A. Kamanoor, A. Chiappini, M. Ferrari, N.R. Desai Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals, Journal of Applied Physics 112 (2012) 0843031-6.


[10] Frascella, F., Ricciardi, S., Pasquardini, L., Potrich, C., Angelini, A., Chiadò, A., Pederzolli, C., De Leo, N., Rivolo, P., Pirri, C.F., Descrovi, E. Enhanced fluorescence detection of miRNA-16 on a photonic crystal Analyst 2015; 140: 5459-5463.


[11] A. Chiappini, C. Armellini, A. Carpentiero, I. Vasilchenko, A. Lukowiak, D. Ristić, S. Varas, S. Normani, M. Mazzola, A. Chiasera Glass-based confined structures fabricated by sol-gel and radio frequency sputtering, Optical Engineering 53 (2014).


[12] F. J. Garcia-Vidal, J. B. Pendry Collective Theory for Surface Enhanced Raman Scattering, Physic. Review. Letters. 77 (1996) 1163-1167.

[13] S. Guddala, K.S. Lee, and D.N. Rao Fabrication of multifunctional SnO2 and SiO2-SnO2 inverse opal structures with prominent photonic band gap properties, Optical Materials Express 3 (2013) 3 407-417.


[14] S. Reculusa, S. Ravaine Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuir-Blodgett Technique, Chemistry of. Materials 15 (2003) 598–605.


[15] B. T. Cunningham Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays JALA Charlottesv Va. 15 (2010) 120–135.


Fetching data from Crossref.
This may take some time to load.