7th Forum on New Materials - Part B

Paper Title Page

Authors: Andrius Laurikėnas, Jurgis Barkauskas, Aivaras Kareiva
Abstract: In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.
70
Authors: Malgorzata Plonska, Jolanta Dzik
Abstract: The aim of this work was to obtain Pb0.92(La0.08)(Zr0.65Ti0.35)0.98O3 materials co-doped with two different lanthanide ions (Ln3+) and characterization how they influence on the physical properties of prepared 8/65/35 PLZT: Ln3+ ceramics. As a co-dopant, praseodymium (Pr3+) and neodymium (Nd3+) ions were used at the concentration of 0.0 and 0.5 wt.% respectively. The ceramic powders of 8/65/35 PLZT, PLZT:Pr3+ as well PLZT:Nd3+ were synthesized by conventional ceramic route, from high purity raw oxide materials (>99,9%). All compositions of the ceramic samples were sintered via single time process at Ts=1200°C/3h, by the hot uniaxial pressing method. Performed measurements have shown dependence of used dopant on structure, microstructure, and dielectric as well optical properties of the fabricated 8/65/35 PLZT: Ln3+ materials.
75
Authors: Massimo Piccinini, Alessandro Ampollini, Luigi Picardi, Concetta Ronsivalle, Monia Vadrucci, Francesca Bonfigli, Stefano Libera, Enrico Nichelatti, Maria Aurora Vincenti, Rosa Maria Montereali
Abstract: Lithium fluoride (LiF) is a well-known dosimeter material and is sensitive to any kind of ionizing radiation. A linear accelerator for protontherapy under development at ENEA C.R. Frascati was used to irradiate LiF crystals and thin films at room temperature with proton beams of 3 and 7 MeV energy in a dose range from 103 to 107 Gy. The irradiation of LiF induced the formation of stable F2 and F3+ color centers (CCs), which emit with broad photoluminescence (PL) bands under optical pumping at wavelengths close to 450 nm. By acquiring the PL image of the irradiated spots with a conventional fluorescence microscope, the transversal proton beam intensity was mapped with a high spatial resolution. The integrated PL intensity was also measured as a function of the irradiation dose: LiF films showed a linear PL response extending over three orders of magnitude of dose range, independently on the beam energy. It was also possible to measure the CCs PL distribution with proton penetration depth and direct imaging the Bragg peak, which gives an estimation of the proton beam energy. The sensitivity of the optical reading techniques and the high emission efficiency of CCs provided encouraging results to use photoluminescent color-center LiF-based radiation detectors for proton beam dosimetry and imaging applications.
82
Authors: Silvio Savoia, Giuseppe Castaldi, Vincenzo Galdi
Abstract: We provide a compact review of some recent results on non-Hermitian metamaterials characterized by spatial modulation of loss and gain. First, we present a systematic synthesis procedure based on a complex-coordinate extension of the transformation-optics paradigm, which admits an insightful interpretation in conjunction with the "complex-source-point" formalism. Subsequently, we study some waveguiding phenomena that can occur in bilayers satisfying the parity-time symmetry condition in the "epsilon-near-zero" regime.
93
Authors: Alba Espinosa-Soria, Francisco J. Rodríguez-Fortuño, Amadeu Griol, Alejandro Martínez
Abstract: Polarimetry enables to measure the state of polarization (SoP) of a light beam, which is essential in many disciplines. Typical polarimeters use bulky and expensive optical elements such as half-wave plates and grid polarizers. Plasmonic nanostructures may help to transform such bulky components into subwavelength metallic elements showing similar performance. Based on the concept of spin-orbit coupling, here we demonstrate a nanophotonic polarimeter that measures the Stokes parameters of a light beam over an ultrabroad bandwidth in a less than a square wavelength active region. Furthermore, the presented approach is applicable to any wavelength regime and technological platform, paving the way for the miniaturization of polarimeters.
103
Authors: Mitsuo Wada Takeda, Akihiko Arikawa, Ryohei Araki, Yosuke Nakata, Fumiaki Miyamaru, Toshihisa Yamaguchi
Abstract: In photonic crystals composed of ferroelectrics, the hybrid bands with corresponding to new additional band gaps are expected to appear around the Brillouin zone’s center and boundaries. In this hybrid bands, the group-velocity anomaly modes related to the phonon-polariton branches are expected to be discovered. Propagation characteristics of the group-velocity anomaly modes in the hybrid bands of one-dimensional photonic crystals fabricated by ferroelectric Li2Ge7O15 single crystals are discussed on the basis of finite element method and finite-difference time-domain numerical analyses and experimental results obtained by terahertz time-domain spectroscopy. It is founded that the electric-field intensity of the standing-wave mode at the end point of the dielectric band branch is found to be localized around all of the ferroelectrics plates in the photonic crystal. In contrast, group-velocity anomaly mode in the vicinity of the standing-wave mode is strongly localized around the first ferroelectrics plate on the incident side and decays as it propagates through the following ferroelectrics plates.
109
Authors: Anatoli I. Shkrebtii, Benjamin Wilk, Robert Minnings, Reinaldo Zapata-Penã, Sean M. Anderson, Bernardo S. Mendoza, Ihor M. Kupchak
Abstract: We characterise from first principles the structure and bonding in 2D heterosystems made of bilayers or trilayers of graphene and graphene-like-materials (GLMs), stacked on top of each other, and functionalized using hydrogen. The effects of electron band gap opening and tuning, as well as formation of strongly bonded multilayers have been predicted. The linear and nonlinear optical and vibrational spectra were modelled for hydrogenated alternating graphene monolayers with insulating hexagonal boron nitride (h-BN) films. Here we focus mostly on the structural aspect of the 2D heterosystems. The simulated atomic and related electron structures indicate that submonolayer hydrogenation of the outer surfaces of multilayer systems induces covalent interlayer bonds and enables electron gap engineering in otherwise gapless graphene or wide-band gap h-BN. Calculated structural, vibrational, electronic and optical properties of the systems of interest aim to enabling in-situ noninvasive characterization of graphene based multilayers.
117
Authors: Gabriela Murguía-Romero, Angel Sánchez, Ricardo Zavaleta-Madrid
Abstract: Within the framework of the Quantum Field Theory, we discuss how to study electromagnetic properties of a multilayer graphene sample in the presence of electric and magnetic fields, both perpendicular to the graphene planes. We deal with the multilayer system by taking into account the quantum mechanical supersymmetric property of the monolayer Hamiltonian. We solve the Dirac equation for the graphene charge carriers by using the Ritus formalism. This formalism consists in the diagonalization of the operator with and the Dirac gamma matrices which contain information about the pseudo-spin. We calculate the charge carrier propagator for the monolayer case, and we obtain the photon polarization operator, the leading quantum correction to the classical Lagrangian density that encodes the electromagnetic properties of the system through the constitutive equations. With the quantum supersymmetrical properties of both, the monolayer and the multilayer graphene Hamiltonians, it is possible to extend our results to obtain the charge carrier propagator for the multilayer case.
125
Authors: Fail R. Sultanov, Z.A. Mansurov, S.S. Pei, S.C. Chang, S. Xing, F. Robles-Hernandez, Y.W. Chi, K.P. Huang
Abstract: In this research aerogels were synthesized by homogenization of carbon nanotubes and chitosan under ultrasonic treatment and active magnetic stirring, followed by freeze-drying in order to remove the liquid from its structure. Freeze-drying is characterized by a certain ratio of pressure and temperature at which the solid phase, in our case - the ice, turns into a gas without passing through a liquid phase. Freeze-drying was carried out at a temperature of-5 ° C and a pressure of 30-80 Pa. After freeze-drying which lasted for 20 hours, the as-obtained aerogels were carbonized at temperature of 800 °C in an inert atmosphere. Surface morphology of resulting aerogels was studied using scanning electron microscopy. The hydrophobicity and sorption capacity of these aerogels to organic liquids characterized by different densities were investigated. In addition, composite aerogels with the presence of graphene layers in the structure were obtained and the influence of introduction of graphene on aerogel’s properties was analyzed. It was found that composite aerogels based on graphene and carbon nanotubes with chitosan as a glue matrix are characterized by a better-developed porosity of surface with a smaller pore sizes, and their sorption capacity for organic liquids is also higher compared with the aerogels based on carbon nanotubes.
131

Showing 11 to 19 of 19 Paper Titles