The effect of composition and temperature upon Ni bulk self-diffusion was studied in monocrystalline specimens, having well-defined compositions which ranged from 36.8 to 56.6at%Ni, at temperatures ranging from 1050 to 1630K (table 6, figure 1). The data could be described by:

46.8at%Ni:     D (m2/s) = 2.34 x 10-5 exp[-2.97(eV)/kT]

48.7at%Ni:     D (m2/s) = 2.39 x 10-5 exp[-2.97(eV)/kT]

49.7at%Ni:     D (m2/s) = 1.67 x 10-5 exp[-2.92(eV)/kT]

50.0at%Ni:     D (m2/s) = 2.98 x 10-5 exp[-2.99(eV)/kT]

51.8at%Ni:     D (m2/s) = 4.80 x 10-5 exp[-2.99(eV)/kT]

54.6at%Ni:     D (m2/s) = 4.36 x 10-5 exp[-2.88(eV)/kT]

56.6at%Ni:     D (m2/s) = 1.03 x 10-6 exp[-2.39(eV)/kT]

The diffusion penetration profiles of Ni were determined by using 2 different techniques of profile detection. Radiotracer experiments were carried out by using 63Ni tracers, serial sectioning techniques; and a sensitive liquid scintillation counter at high temperatures. At lower temperatures, the diffusion profiles were analyzed by using secondary ion mass spectrometry and the highly enriched stable isotope, 64Ni. In contrast to published data on Ni self-diffusion in NiAl, the present measurements revealed an unexpected concentration-dependence of the Ni diffusion coefficient; with almost constant diffusivities for stoichiometric and Al-rich alloys, and increasing diffusivity values with increasing Ni content on the Ni-rich side of the NiAl composition range (figure 2). The effective diffusion activation enthalpy was equal to about 3.0eV for Al-rich, stoichiometric and slightly Ni-rich alloys. In the case of samples having higher Ni contents, a decrease was observed with increasing Ni content. For example, the effective diffusion activation enthalpy was equal to 2.39eV for Ni56.6Al43.4. The present results implied that the same diffusion mechanism operated on both sides of stoichiometry. This was suggested to be the triple-defect mechanism. Its contribution was independent of composition. An activation energy of 3.18eV was estimated for the triple defect mechanism by using empirical potentials. The decrease in effective diffusion activation enthalpy at high Ni concentrations on the Ni-rich side was attributed to an additional contribution from the anti-structure bridge mechanism, with an activation energy of 1.73eV.

Ni Tracer Diffusion in the B2-Compound NiAl - Influence of Temperature and Composition. S.Frank, S.V.Divinski, U.Södervall, C.Herzig: Acta Materialia, 2001, 49[8], 1399–411

 

 

 

 

 

 

 

 

 

 

Figure 1

Diffusivity of Ni in NiAl

 

 

 

 

 

 

 

Figure 2

Diffusivity of Ni in NiAl

 

Table 6

Bulk Self-Diffusivity of Ni in NiAl

 

Temperature (K)

Ni (at%)

D (m2/s)

1106

46.8

7.11 x 10-19

1194

46.8

6.71 x 10-18

1280

46.8

4.32 x 10-17

1376

46.8

3.40 x 10-16

1455

46.8

1.19 x 10-15

1577

46.8

1.81 x 10-14

1051

48.7

1.55 x 10-19

1092

48.7

4.83 x 10-19

1106

48.7

6.85 x 10-19

1155

48.7

2.92 x 10-18

1198

48.7

5.89 x 10-18

1231

48.7

1.23 x 10-17

1267

48.7

3.53 x 10-17

1327

48.7

1.20 x 10-16

1392

48.7

3.71 x 10-16

1448

48.7

1.07 x 10-15

1475

48.7

1.95 x 10-15

1498

48.7

2.75 x 10-15

1542

48.7

5.88 x 10-15

1577

48.7

1.55 x 10-14

1629

48.7

3.81 x 10-14

1051

49.7

1.29 x 10-19

1092

49.7

7.37 x 10-19

1106

49.7

8.58 x 10-19

1155

49.7

3.89 x 10-18

1198

49.7

8.28 x 10-18

1231

49.7

1.14 x 10-17

1267

49.7

4.31 x 10-17

1327

49.7

1.31 x 10-16

1392

49.7

4.35 x 10-16

1448

49.7

1.05 x 10-15

1475

49.7

1.49 x 10-15

1498

49.7

2.31 x 10-15

1542

49.7

6.66 x 10-15

1577

49.7

1.47 x 10-14

1629

49.7

3.70 x 10-14

1051

50.0

1.79 x 10-19

1055

50.0

2.08 x 10-19

1092

50.0

3.32 x 10-19

1106

50.0

6.91 x 10-19

1115

50.0

5.70 x 10-19

1155

50.0

3.28 x 10-18

1176

50.0

3.26 x 10-18

1198

50.0

8.82 x 10-18

1205

50.0

6.39 x 10-18

1207

50.0

1.35 x 10-17

1231

50.0

1.28 x 10-17

1231

50.0

1.63 x 10-17

1240

50.0

2.13 x 10-17

1267

50.0

4.37 x 10-17

1281

50.0

4.64 x 10-17

1317

50.0

1.40 x 10-16

1327

50.0

1.46 x 10-16

1360

50.0

2.55 x 10-16

1392

50.0

4.88 x 10-16

1423

50.0

9.56 x 10-16

1448

50.0

1.17 x 10-15

1475

50.0

1.68 x 10-15

1498

50.0

2.68 x 10-15

1542

50.0

7.68 x 10-15

1577

50.0

1.35 x 10-14

1629

50.0

4.35 x 10-14

1051

51.8

2.90 x 10-19

1092

51.8

4.75 x 10-19

1106

51.8

1.39 x 10-18

1155

51.8

3.05 x 10-18

1198

51.8

2.05 x 10-17

1231

51.8

2.68 x 10-17

1267

51.8

7.20 x 10-17

1327

51.8

2.32 x 10-16

1392

51.8

8.84 x 10-16

1448

51.8

1.81 x 10-15

1475

51.8

2.70 x 10-15

1498

51.8

3.83 x 10-15

1542

51.8

1.07 x 10-14

1577

51.8

2.39 x 10-14

1629

51.8

6.21 x 10-14

1051

54.6

1.33 x 10-18

1092

54.6

1.47 x 10-18

1106

54.6

4.58 x 10-18

1155

54.6

4.88 x 10-18

1198

54.6

3.81 x 10-17

1231

54.6

9.73 x 10-17

1267

54.6

1.16 x 10-16

1327

54.6

4.23 x 10-16

1392

54.6

1.62 x 10-15

1448

54.6

6.50 x 10-15

1475

54.6

5.66 x 10-15

1498

50.0

2.68 x 10-15

1542

50.0

7.68 x 10-15

1577

50.0

1.35 x 10-14

1629

50.0

4.35 x 10-14

1051

51.8

2.90 x 10-19

1092

51.8

4.75 x 10-19

1106

51.8

1.39 x 10-18

1155

51.8

3.05 x 10-18

1198

51.8

2.05 x 10-17

1231

51.8

2.68 x 10-17

1267

51.8

7.20 x 10-17

1327

51.8

2.32 x 10-16

1392

51.8

8.84 x 10-16

1448

51.8

1.81 x 10-15

1475

51.8

2.70 x 10-15

1498

51.8

3.83 x 10-15

1542

51.8

1.07 x 10-14

1577

51.8

2.39 x 10-14

1629

51.8

6.21 x 10-14

1051

54.6

1.33 x 10-18

1092

54.6

1.47 x 10-18

1106

54.6

4.58 x 10-18

1155

54.6

4.88 x 10-18

1198

54.6

3.81 x 10-17

1231

54.6

9.73 x 10-17

1267

54.6

1.16 x 10-16

1327

54.6

4.23 x 10-16

1392

54.6

1.62 x 10-15

1448

54.6

6.50 x 10-15

1475

54.6

5.66 x 10-15

1498

54.6

9.85 x 10-15

1542

54.6

2.77 x 10-14

1577

54.6

4.04 x 10-14

1629

54.6

9.76 x 10-14

1194

56.6

8.20 x 10-17

1280

56.6

4.25 x 10-16

1376

56.6

1.90 x 10-15

1455

56.6

5.25 x 10-15

1577

56.6

6.29 x 10-14