Monte Carlo simulation was employed to investigate correlation factors of atoms (f(A)) diffusing via vacancies in nanofilms possessing a simple cubic lattice that was selected as a model system. The correlation factors changed significantly with varying the film thickness, as well as jump frequency ratios. When the film thickness was sufficiently large, f(A) approaches 0.6531, a limiting value for the three-dimensional bulk lattice. As the film thickness was considerably small, f(A) converges to 0.4669, a limiting value for the two-dimensional square lattice. A minimum of the factors, corresponding to 2/3 x f(A)(3D-SC) (= 0.4354), occurred in a specific nanofilm regime ranging from about 100 to 500 atomic layers, which was mainly due to confinement of atoms movement to nanofilms. Correlation factors of vacancy diffusion (f(v)) were also investigated and exhibited similar trend of the relations between the factors and the film thickness in a certain nanofilm regime. The relation between the correlation factors and the film thickness was analyzed and discussed.

Monte Carlo Simulation of Atom Diffusion via Vacancies in Nanofilms with a Model Simple Cubic Lattice System. Y.C.Chieh, F.H.Lu: Journal of Nanoscience and Nanotechnology, 2011, 11[3], 2376-83