A phase-field model was used to investigate the simultaneous effects of grain boundary energy anisotropy and the presence of second-phase particles on grain growth in polycrystalline materials. The system of grains with anisotropic grain boundary energies was constructed by considering models of low and high misorientation angles between adjacent grains. Systems without particles reached a steady state grain growth rate, and this rate decreased by including the grain boundary energy anisotropy. In addition, the presence of particles significantly altered the microstructures during grain growth. This study showed that for systems including particles, the critical average grain size to stop grain growth depended not only upon the volume fraction and size of particles, but also upon the grain boundary energy anisotropy.
Investigating the Effects of Grain Boundary Energy Anisotropy and Second-Phase Particles on Grain Growth Using a Phase-Field Model. M.A.Zaeem, H.El Kadiri, P.T.Wang, M.F.Horstemeyer: Computational Materials Science, 2011, 50[8], 2488-92