A high-vacuum open-tube method for the diffusion of Al into Si was described. The process permitted Al doping which involved surface concentrations that ranged from 1017 to 1019/cm2. A simplified mass transport model was developed in order to evaluate the diffusion data. It was found that the Al diffusivity at 1025 to 1175C could be described by:
D (cm2/s) = 1.80 x 100 exp[-3.2(eV)/kT]
W.Rosnowski: Journal of the Electrochemical Society, 1978, 125[6], 957-62
The best linear fits to the solute diffusion data ([124] to [129], [133] to [144], [146] to [176], [188] to [192], [196] to [211], [215] to [223], [234] to [242], [252] to [283], [292] to [298], [306] to [314]) yield:
Al: Ln[Do] = 0.45E – 32.8 (R2 = 0.81); As: Ln[Do] = 0.29E – 23.2 (R2 = 0.87);
Au: Ln[Do] = 0.16E – 12.4 (R2 = 0.16); B: Ln[Do] = 0.29E – 22.6 (R2 = 0.79);
Cu: Ln[Do] = 0.22E (R2 = 0.86); Fe: Ln[Do] = 0.62E – 15.8 (R2 = 0.53);
Ga: Ln[Do] = 0.20E - 16.9 (R2 = 0.78); Ge: Ln[Do] = 0.29E – 23.2.8 (R2 = 0.98);
H: Ln[Do] = 0.17E - 9.9 (R2 = 0.07); Li: Ln[Do] = 0.25E – 9.6 (R2 = 0.48);
Ni: Ln[Do] = 0.29E - 19.4 (R2 = 0.66); O: Ln[Do] = 0.34E – 21.6 (R2 = 0.95);
P: Ln[Do] = 0.35E - 27 (R2 = 0.94); Sb: Ln[Do] = 0.35E – 29.3 (R2 = 0.96);
Si: Ln[Do] = 0.33E - 29 (R2 = 0.86)