By using p-n junction and 4-point probe resistivity techniques, an investigation was made of the diffusion of B into n-type single crystals from a doped oxide layer which was produced by reactive sputtering. The diffusion profiles which were obtained corresponded closely to the complementary error function. At 1100 to 1270C, and for a concentration of about 1016/cm3, the data could be described by:

D (cm2/s) = 1.5 x 10-1 exp[-4.25(eV)/kT]

K.Nagano, S.Iwauchi, T.Tanaka: Japanese Journal of Applied Physics, 1968, 7[11], 1361-7

 

 

 

The best linear fits to the solute diffusion data ([124] to [129], [133] to [144], [146] to [176], [188] to [192], [196] to [211], [215] to [223], [234] to [242], [252] to [283], [292] to [298], [306] to [314]) yield:

Al: Ln[Do] = 0.45E – 32.8 (R2 = 0.81); As: Ln[Do] = 0.29E – 23.2 (R2 = 0.87);

Au: Ln[Do] = 0.16E – 12.4 (R2 = 0.16); B: Ln[Do] = 0.29E – 22.6 (R2 = 0.79);

Cu: Ln[Do] = 0.22E (R2 = 0.86); Fe: Ln[Do] = 0.62E – 15.8 (R2 = 0.53);

Ga: Ln[Do] = 0.20E - 16.9 (R2 = 0.78); Ge: Ln[Do] = 0.29E – 23.2.8 (R2 = 0.98);

H: Ln[Do] = 0.17E - 9.9 (R2 = 0.07); Li: Ln[Do] = 0.25E – 9.6 (R2 = 0.48);

Ni: Ln[Do] = 0.29E - 19.4 (R2 = 0.66); O: Ln[Do] = 0.34E – 21.6 (R2 = 0.95);

P: Ln[Do] = 0.35E - 27 (R2 = 0.94); Sb: Ln[Do] = 0.35E – 29.3 (R2 = 0.96);

Si: Ln[Do] = 0.33E - 29 (R2 = 0.86)