The diffusion of B from sources which were implanted at 80keV was investigated at 1000 to 1200C, for doses of between 1014 and 2 x 1015/cm2. Diffusion was carried out in a steam ambient, and the oxide thicknesses which were produced ranged from 0.0002 to 0.0012mm. Normal diffusion was observed, except for short-term tests at 1000C. The results could be described by:

D (cm2/s) = 3.22 x 10-2 exp[-3.02(eV)/kT]

J.L.Prince, F.N.Schwettmann: Journal of the Electrochemical Society, 1974, 121[5], 705-10

 

 

 

The best linear fits to the solute diffusion data ([124] to [129], [133] to [144], [146] to [176], [188] to [192], [196] to [211], [215] to [223], [234] to [242], [252] to [283], [292] to [298], [306] to [314]) yield:

Al: Ln[Do] = 0.45E – 32.8 (R2 = 0.81); As: Ln[Do] = 0.29E – 23.2 (R2 = 0.87);

Au: Ln[Do] = 0.16E – 12.4 (R2 = 0.16); B: Ln[Do] = 0.29E – 22.6 (R2 = 0.79);

Cu: Ln[Do] = 0.22E (R2 = 0.86); Fe: Ln[Do] = 0.62E – 15.8 (R2 = 0.53);

Ga: Ln[Do] = 0.20E - 16.9 (R2 = 0.78); Ge: Ln[Do] = 0.29E – 23.2.8 (R2 = 0.98);

H: Ln[Do] = 0.17E - 9.9 (R2 = 0.07); Li: Ln[Do] = 0.25E – 9.6 (R2 = 0.48);

Ni: Ln[Do] = 0.29E - 19.4 (R2 = 0.66); O: Ln[Do] = 0.34E – 21.6 (R2 = 0.95);

P: Ln[Do] = 0.35E - 27 (R2 = 0.94); Sb: Ln[Do] = 0.35E – 29.3 (R2 = 0.96);

Si: Ln[Do] = 0.33E - 29 (R2 = 0.86)