Wafers of (111) type were diffused from BN sources at 986 to 1132C, and the doping profiles were determined by means of serial sectioning and sheet conductivity measurements. They exhibited plateaux of almost constant doping near to the surface, and large deviations from an erfc profile. The diffusion coefficient was deduced from the profiles by using Boltzmann’s method. A marked increase in the coefficient, as a function of B concentration, was noted for concentrations greater than 1019/cm3. The results could be described by:
D (cm2/s) = 1.37 x 100 exp[-3.59(eV)/kT]
K.P.Frohmader, L.Baumbauer: Solid State Electronics, 1980, 23[12], 1263-5
The best linear fits to the solute diffusion data ([124] to [129], [133] to [144], [146] to [176], [188] to [192], [196] to [211], [215] to [223], [234] to [242], [252] to [283], [292] to [298], [306] to [314]) yield:
Al: Ln[Do] = 0.45E – 32.8 (R2 = 0.81); As: Ln[Do] = 0.29E – 23.2 (R2 = 0.87);
Au: Ln[Do] = 0.16E – 12.4 (R2 = 0.16); B: Ln[Do] = 0.29E – 22.6 (R2 = 0.79);
Cu: Ln[Do] = 0.22E (R2 = 0.86); Fe: Ln[Do] = 0.62E – 15.8 (R2 = 0.53);
Ga: Ln[Do] = 0.20E - 16.9 (R2 = 0.78); Ge: Ln[Do] = 0.29E – 23.2.8 (R2 = 0.98);
H: Ln[Do] = 0.17E - 9.9 (R2 = 0.07); Li: Ln[Do] = 0.25E – 9.6 (R2 = 0.48);
Ni: Ln[Do] = 0.29E - 19.4 (R2 = 0.66); O: Ln[Do] = 0.34E – 21.6 (R2 = 0.95);
P: Ln[Do] = 0.35E - 27 (R2 = 0.94); Sb: Ln[Do] = 0.35E – 29.3 (R2 = 0.96);
Si: Ln[Do] = 0.33E - 29 (R2 = 0.86)